THE ROLE OF POSITRON EMISSION TOMOGRAPHY/COMPUTED TOMOGRAPHY (PET/CT) IN CANCER BREAST

Essay

Submitted for partial fulfillment of Master degree in **Radiodiagnosis**

By

Yousra Mohamed Morsey El Emery M.B.B. Ch

Faculty of Medicine - Ain Shams University

Under the Supervision of

Prof. Dr. Sahar Mohamed El Fiky

Professor of Radio-diagnosis
Faculty of Medicine - Ain Shams University

Dr. Mohamed Amin Nassef

Lecturer of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Radiodiagnosis Department
Faculty of Medicine
Ain Shams University
Cairo
2011

دور التصوير الطبقي بالبوزيترون في حالات سرطان الثدي

رسالة

توطئة للحصول على درجه الماجستير في الأشعة التشخيصية

مقدمه من الطبيبه / يسرا محمد مرسى العميرى بكالوريوس الطب والجراحة

تحت إشراف

أد/ سحر محمد الفقى

أستاذ الأشعة التشخيصية كليه الطب - جامعه عين شمس

د/محمد أمين ناصف

مدرس الأشعة التشخيصية كليه الطب - جامعه عين شمس

> كليه الطب جامعه عين شمس 2011

Summary and Conclusion

Breast cancer is the most commonly diagnosed form of cancer and leading cause of death in women. The incidence rate is increasing and woman with 1 in 8 chances of women developing breast cancer in their lifetime.

Mortality for patients with breast cancer decreased significantly, largely because of early detection or screening for breast cancer and advances in medical care and treatments.

Conventional imaging modalities such as mammography and ultrasound rely primarily on changes in anatomic structure for disease detection. FDG PET can help detect accelerated metabolic activity that occurs before anatomic structural changes occur. However, the expense of the examination and radiation exposure involved is not generally suitable for routine screening purposes.

A major advantage of FDG PET imaging as compared to conventional imaging is the ability to screen the entire patient for local recurrence, lymph node metastases and distant metastases during a single whole body examination.

The main drawback of PET in tumor imaging is the complete absence of anatomic landmarks, which impedes precise localization of lesions. Furthermore, there are issues

Contents

	Page
1. Introduction and aim of work	1
2. Anatomy of the breast	5
3. Pathology of Breast Cancer.	19
4. Technique of PET/CT	42
5. Application of PET-CT in Breast Cancer	55
6. Summary and conclusion	60
7. References.	63
8. Arabic Summary	

List Of Abbreviations

18FDG 18F- FluoroDeoxyGlucose

18-F-FES Fluorine-18 estradiol

ALND Axillary lymph node dissection

CIS Carcinoma in situ

CT Computed Tomography

DCIS Ductal Carcinoma In Situ

ER Esrtrogen Receptors

FDG FluoroDeoxyGlucose

GLUT Glucose Transporters

H+ Hydrogen ion

IDC Invasive ductal carcinomas

ILC Invasive lobular carcinoma

IV Intravenous

KeV Kilo electron Volt

KV Kilo Volt

LABC Locally Advanced Breast Cancer

LCIS Lobular Carcinoma In Situ

LSO Lutetium Oxyorthosilicate

MCi Micro Curies

MeV Mega electron Volt

MRI Magnetic Resonance Imaging

PET Positron Emission Tomography

List Of Abbreviations (Cont.)

PET/CT Positron Emission Tomography/Computed

Tomography

PHA Pulse Height Analyzer

PMTs Photomultiplier Tubes

PR Progesterone Receptors

SLN The sentinel lymph node

SUV Standardized uptake value

SUVs Standard Uptake Values

TDLU Terminal ductal lobular units

WHO World Health Organization

LIST OF TABLES

Table	Table Description	Page
1	WHO Histological Classification of Breast Cancer	23
2	TNM Staging System for Breast Cancer	39

List of Figures

Figure	Title	Page
1	Cross sectional anatomy of the female breast	5
2	Microscopic anatomy of the female breast	7
3	classification of axillary lymph nodes	10
4	breast CT images not routinely seen in	11
	mammographic images	
5	CT anatomy of the breast	13
6	Lactating breasts	15
7	Normal distribution of FDG	17
8	Normal PET scan shows regions of normal	18
	intense uptake in brain, heart kidneys and	
	Urinary bladder	
9	Macroscopic picture of invasive duct	26
	carcinoma	
10	Microscopic picture of invasive duct	27
	carcinoma	
11	Microscopic picture of invasive lobular	28
	carcinoma	
12	Microscopic picture of mucinous carcinoma.	29
13	Microscopic picture of Paget's disease of the	32
	breast with a large Paget's cells which have abundant clear cytoplasm and appear in the	
	epidermis either singly or in clusters.	

List of Figures (Cont.)

Figure	Title	Page
14	Photograph (side view) of a hybrid PET-CT scanner shows the PET (P) and CT (C) components.	42
15	Typical scout image obtained during an FDG PET/CT study.	52
16	Invasive ductal carcinoma in a 42-year-old woman.	58
17	Invasive lobular carcinoma in a 50-year-old woman.	59
18	Axillary lymph node metastasis in a 45-year- old woman with a 4 cm invasive ductal carcinoma	62
19	Mediastinal lymph node metastasis in a 41-year-old woman who had undergone left modified radical mastectomy 10 months previously.	63
20	Multiple distant metastases in a 44-year-old woman with bilateral breast cancer.	65
21	Bone metastases in a 47-year-old woman with breast cancer.	66

List of Figures (Cont.)

Figure	Title	Page
22	Extensive metastatic disease at PET/CT	67
	performed for pretreatment staging of invasive	
	ductal carcinoma in a 48-year-old woman.	
23	Restaging with PET/CT in a patient suspected	68
	of having metastatic disease.	
24	Chemotherapy in a 35-year-old woman with	70
	bilateral breast cancer and bone metastases.	
25	Local recurrence in a 74-year-old woman who	77
	had undergone right modified radical	
	mastectomy eight years previously	
26	Restaging in 45-year-old woman with history	79
	of right breast carcinoma who had undergone	
	lumpectomy and radiation therapy.	
27	False-positive finding at PET/CT during	81
	restaging and follow-up after breast-conserving	
	surgery and radiation therapy for invasive	
	ductal carcinoma in a 53-year-old woman.	
28	False-negative finding at PET/CT during	83
	staging of ovarian cancer in a 56 year-old	
	woman.	

Introduction

Breast cancer is the leading cause of death and the most common cancer in women, yet we still don't know how to prevent it. Early and accurate diagnosis remains a challenge. The current standards rely on physical examination, mammography and/or ultrasound, and fine needle aspiration. If the breast cancer is found early, prompt treatment could save lives (*Rohren et al.*, 2004).

Imaging modalities like computed tomography (CT) and magnetic resonance (MR) imaging rely on detecting anatomic changes for the diagnosis, staging and follow-up of cancer patients. However, positron emission tomography (PET) has the ability to demonstrate abnormal metabolic activity, and 18F-2-deoxy-D-glucose (FDG) PET provides important tumor-related qualitative and quantitative metabolic information that may be critical for the diagnosis and follow-up (Wahl et al., 1991).

Moreover, the combination of PET and computed tomography (PET/CT) allows the functional PET and anatomical CT images to be acquired under identical conditions and then they are rapidly co-registered. This combined system has advantages over CT alone as functional information is added to morphological data. This combined

Introduction and Aim of The Work

system has advantages over PET alone because pathological areas of tracer uptake are better localized and the image acquisition time is reduced (*Tatsumi et al.*, 2006).

PET/CT has a role to play in a selected group of patients, such as those with dense breasts or with implants, for determining tumor multiplicity, for localizing the primary tumor in those patients with metastases of a breast origin when the mammography is indeterminate, and for those patients whom biopsy is not a desirable option. PET/CT has a potential advantage over PET for evaluating small lesions in which the uptake may be artifactually lowered due to the partial volume effect of PET because areas of mild hyperglycolytic activity can be reliably assigned to normal or abnormal anatomical structures (*Schirrmeister*, *Kühn et al.*, 2001).

Axillary lymph node metastasis is an important factor when determining the prognosis of patients. Breast cancer patients with four or more involved axillary lymph nodes have a significantly higher risk of recurrence. The sensitivity and specificity of axillary PET imaging in breast cancer patient have been reported as 79-94% and 86-92%, respectively. PET/CT can accurately localize and differentiate the metastatic and reactive lymph nodes when CT shows multiple enlarged lymph nodes in the axilla (*Bar-Shalom et al.*, 2003).

Introduction and Aim of The Work

Distant metastases from breast cancer are frequently found in the lungs, liver and bones. One advantage of whole-body PET imaging over conventional imaging modalities such as chest films, bone scanning, and abdominal ultrasound is its ability to detect metastasis at different sites and organs during a single examination (*Cook et al.*, 1998).

Therapy induced changes in tumor metabolism may be helpful in making decisions about continuation, modification or cessation therapy. Therefore, [(18) F] FDG PET-CT appears to be a promising tool for the personalization of breast cancer treatment by its early identification of non responders. The introduction of new PET tracers and the development of new instruments will offer opportunities to improve the role of PET-CT in decision making of therapy in these patients (*Pons et al.*, 2009).

Detecting early recurrence has an important survival benefit because it prompts clinical consideration for administering different therapies. However, it is difficult to differentiate true recurrence from postsurgical sequelae and radiation sequelae with using just the conventional imaging modalities (*Eubank et al., 2002*).

PET is considered to be highly effective for evaluating patients with suspected recurrent breast cancer, and it surpasses the other conventional imaging modalities in terms of whole-body evaluation (*Grahek et al.*, 2004).

Aim of The Work

The aim of this work is to highlight the role of PET/CT in diagnosis, staging, follow up and assessment of therapy in patients with breast cancer.

Anatomy of The Breast

Gross anatomy of the breast:

The adult mammary gland is normally situated between superficial and deep layers of the superficial pectoral fascia of the anterior chest wall, extending roughly from the second intercostal space to the inframammary fold, overlying the sixth or seventh anterior intercostal space (Fig. 1). The ductal tissue can extend to the clavicle, to the anterior midline, into the axilla, and as far laterally as the border of latismus dorsi 15% of cases muscle. In ducts extend beyond the inframammary fold. The ducts don't communicate across the midline of the chest (Siegel et al., 1990).

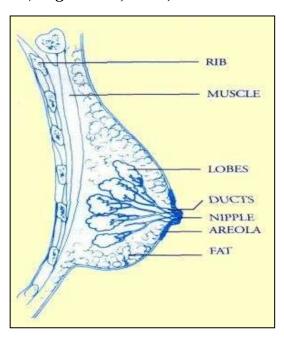


Figure (1): Cross sectional anatomy of the female breast (*Rayan*, 2000)