

A NEW APPROACH FOR CONTINUOUS IMPROVEMENT OF QUARRY SECTIONS FOR BETTER PERFORMANCE IN LAFARGE CEMENT EGYPT LIMESTONE QUARRY

By Eng. Mohamed Ashraf Ghazy Hassan

A Thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In MINING ENGINEERING

A NEW APPROACH FOR CONTINUOUS IMPROVEMENT OF QUARRY SECTIONS FOR BETTER PERFORMANCE IN LAFARGE CEMENT EGYPT LIMESTONE QUARRY

By Eng. Mohamed Ashraf Ghazy Hassan

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In MINING ENGINEERING

Under the supervision of

Prof. Dr. Hassan Fahmy Imam

Professor of rock and Tunneling
Engineering
Mining, Petroleum and Metallurgy
Department
Faculty of Engineering, Cairo University

Prof. Dr. Taha M Abdallah

Professor of surface mining
Mining, Petroleum and Metallurgy
Department
Faculty of Engineering, Cairo University

Dr. Mohamed A El-Zahabi

Lecturer of Engineering Geology Mining, Petroleum and Metallurgy Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING - CAIRO UNIVERSITY GIZA - EGYPT 2017

A NEW APPROACH FOR CONTINUOUS IMPROVEMENT OF QUARRY SECTIONS FOR BETTER PERFORMANCE IN LAFARGE CEMENT EGYPT LIMESTONE QUARRY

By **Eng. Mohamed Ashraf Ghazy Hassan**

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In MINING ENGINEERING

Approved by the Examining Committee:	
Prof. Dr. Hassan F. Imam, Mining, Petroleum and Metallurgy Department Faculty of Engineering, Cairo University	Thesis Main Advisor
Prof. Dr. Taha M Abdallah, Mining, Petroleum and Metallurgy Department Faculty of Engineering, Cairo University	Advisor
Prof. Dr. Yehia Saad El Deen Mohamed, Mining, Petroleum and Metallurgy Department Faculty of Engineering, Cairo University	Internal Examiner
Prof. Dr. Adel Soliman Abd El Khalek,	External Examiner

FACULTY OF ENGINEERING - CAIRO UNIVERSITY GIZA - EGYPT 2017

Prof. of Mining Engineering,

El-Tabbin Institute of Metallurgical Studies

Engineer's Name: Mohamed Ashraf Ghazy

Date of Birth: 25/08/1986 Nationality: Egyptian

Phone: +201003570085

Email: Eng.mohamed.ashraf@hotmail.com LinkedIn Profile: https://www.linkedin.com/in/ghazy1

Registration Date: 01/10/2011 Awarding Date: / /2017

Degree: Master of Science
Department: Mining Engineering.

Supervisors: Prof. Dr. Hassan Fahmy Imam

Prof. Dr. Taha M Abdallah Dr. Mohamed A El-Zahabi

Prof. Dr. Hassan Fahmy Imam (Thesis Main Advisor)

Prof. Dr. Taha M Abdallah (Advisor)

Prof. Dr. Yehia Saad El Deen Mohamed (Internal Examiner)
Prof. Dr. Adel Soliman Abd El Khalek (External Examiner)

Prof. of Mining Engineering,

El-Tabbin Institute of Metallurgical Studies.

Title of Thesis:

A new approach for Continuous Improvement of quarry sections for optimum performance and production cost in Lafarge Cement Egypt Limestone Quarry

Keywords:

Performance Optimization, Breakdown Management, Continuous Improvement, Quarry Management, Benchmarking.

Summary:

Crushing plant reliability factor (RF) used in Lafarge cement Egypt plant as a one of the main key performance indicators to measure and monitor quarry performance. Recently we noticed that we didn't achieve crushing plant Reliability factor target, so this study have been done to highlight the top reasons that mostly affect crushing plant (RF) by using pareto analysis, and to construct new control sheets to continually follow up, and optimize each section's performance by using internal benchmarking, and finally setting standard operating procedures in order to increase reliability factor, and thus quarry performance, and to ensure continuous, sustainable improvement process in place.

Acknowledgment

First and foremost, I offer my sincerest gratitude to my thesis advisor Prof. Dr.Hassan Fahmy Imam of the rock and Tunneling Engineering at Cairo University. The door to Prof. Imam Office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me in the right direction whenever he thought I needed it.

Furthermore, I owe my deepest gratitude to Prof. Dr. Taha Abdallah, and Dr. Mohamed Elzahabi, Mining Engineering Department, Faculty of Engineering, Cairo University. I cannot deny their support and encouragement by making me think directly towards the main point of this research. I attribute the output of my Master's thesis to their encouragement and comments.

I would like also to acknowledge Prof. Dr. Yehia Saad Prof of Mining Engineering at Cairo University, and Prof. Dr. Adel Soliman Abd El Khalek Prof of Mining Engineering at El-Tabbin Institute of Metallurgical Studies as second and third readers of this thesis, and I am gratefully indebted to them for their very valuable comments on this thesis.

In addition, I would like to thank the experts who were involved in the validation survey for this research project:

Dr. Ayman Abdelaal: Quarries & Production Director,

And all Quarry Team, without their passionate participation and input, the validation survey could not have been successfully conducted.

Finally, I must express my very profound gratitude to my Parents, Brothers, Sisters, Children, and to my Wife for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Author Mohamed Ashraf Ghazy

Table of Contents

Acknowledgment	i
List of tables	iv
List of figures	v
Abstract	vi
Chapter (1): Introduction	1
1.1 Lafarge Cement Egypt (LCE) Plant Highlights:	1
1.1.1 Lafarge Cement Egypt Plant Equipment:	2
1.1.2 Plant Location:	2
1.2 El Sokhna Limestone Quarry Highlights.	3
1.2.1- Quarry sections.	4
1.2.2- Quarrying Activities.	4
1.2.3- Crushing Plant Highlights.	5
1.2.4- Preventive Maintenance schedules.	6
1.3- Crushing plant Key Performance Indicators (KPIs).	7
Chapter (2): Scope and goals of present work	9
2.1 Scope of the study:	9
2.2 Problem:	9
2.3 Objectives:	9
Chapter (3): Survey of quarry performance records	11
3.1- Quarry performance records (actual versus targets 2011-2015):	
3.1.1- Percentages of achieved KPIs (actual versus targets 2011-2015)	12
3.2- Problem formulation:	15
3.3- Basic information:	15
3.3.1- Equation of reliability factor (RF):[5]	15
3.3.2- The relation between incident hours and reliability factor	
3.3.3- Equation of total incident hours or total downtimes	
Chapter (4): Current field Approach	
4.1 current approach to follow up and improve performance:	
4.2 Cons of the existing approach:	21
Chapter (5): Analytical basis of present work approaches	23
5.1 Attempts to decrease crushers' Incident hours	
5.2- First Approach based on Pareto Principle	23
5.2.1 Survey of related aspects	
5.2.1.1 Pareto Principle	
5.2.1.2 Pareto chart	

5.2.1.3 Purpose of Pareto chart	24
5.2.2 Analysis based on Pareto concept	24
5.2.2.1 Pareto analysis of mechanical breakdowns:	25
5.2.2.2 Pareto analysis of electrical breakdowns:	30
5.2.2.3 Pareto analysis of production breakdowns:	35
5.2.2.4 Pareto analysis of Instrumentation breakdowns:	40
5.2.3- Results	43
5. 3 Second Approach based on Benchmarking	47
5.3.1- Survey of related aspect	47
5.3.1.2 Benchmarking types:	47
5.3.1.3 Internal Benchmarking:	47
5.3.1.4 Methodology of the Present Approach:	47
5.3.2- Analysis based on benchmarking concept	48
5.3.2.1 Benchmarking steps:	48
5.3.2.2 Planning phase:	48
5.3.2.3 Gathering data phase:	48
5.3.2.4 Analyzing phase:	51
5.3.2.5 Controlling phase:	58
5.3.3- Results	62
Chapter (6): Conclusions	67
6.1 conclusions of the study:	67
6.2 Standard Operating Procedure (SOP):	67
6.2.1- SOP Definition:	67
6.2.2- SOP that constitutes the new approach to control and optimize cr performance:	
6.2.3- SOP to ensure a continuous improvement process in place	68
References	71

List of tables

Table (1) Actual versus target key performance indicators (KPIs) Records (2011-2015	11
Continued- Table (1) Actual versus target key performance indicators (KPIs) Records	
from (2011-2015)	11
Table (2) Calculation of production loss due to not achieving (RF) target (2013-2015)	14
Table (3) El-Sokhna limestone quarry budget – 2013	17
Table (4) Daily key performance indicator follow up report (24/12/2014)	17
Continued - Table (4) Daily key performance indicator follow up report (24/12/2014)	
Continued - Table (4) Daily key performance indicator follow up report (24/12/2014)	18
Table (5) Crushing plant daily downtime report (24-12-2014)	
Continued – table (5) Crushing plant daily downtime report (24-12-2014)	
Table (6) Top (20 %) of Mechanical breakdowns.	
Table (7) Top (20 %) of electrical breakdowns.	
Table (8) Top (20 %) of production breakdowns.	39
Table (9) Top (20 %) of instrumentation breakdowns	42
Table (10) The top 20% of crushing plant breakdowns	43
Table (11) Template of the proposed Action Plan to improve Quarries Department	
Performance.	44
Table (12) Downtime house and frequencies due to metal alarm (2014-2015)	46
Table (13) Action plan to reduce or eliminate metal alarm downtimes	
Table (14) Records and classification of all quarries department downtimes from 2011 t	Ю.
2015	49
Table (15) Annual production downtimes (hours) from 2011 to 2015	50
Table (16) % of annual breakdowns to the total Incident hours (2011-2015)	
Table (17) Minimum (%) of breakdowns from 2011 to 2015	52
Table (18) Averages of annual Breakdowns % to the total Incident hours (2011-2015)	52
Table (19) % of annual production downtimes to the total Incident hours (2011-2015).	53
Table (20) Minimum (%) of production downtimes (2011-2015)	54
Table (21) Averages of annual production downtimes % to the total Incident hours (201	1-
2015)	
Table (22) Structure of quarry optimization control sheets	60
Table (23) Evaluating crushing plant performance (19/7/2016)	62
Table (24) a proposed action plan to improve the out of target breakdowns	

List of figures

Figure (1) Lafarge Cement Egypt Plant (LCE)	1
Figure (2) Lafarge Cement Egypt plant location	
Figure (3) El Sokhna Limestone Quarry	3
Figure (4) Quarry Sections	4
Figure (5) Quarrying activities in El Sokhna Limestone quarry	4
Figure (6) Crushing plant lines	
Figure (7) Crushing line components in El-Sokhna limestone quarry	
Figure (8) Percentage of achieved production to the target from 2011 to 2015	12
Figure (9) Percentage of achieved operating hours to the target from 2011 to 2015	12
Figure (10) Percentage of achieved output to the target (2011 – 2015)	13
Figure (11) Percentage of achieved utilization factor to the target (2011 – 2015)	13
Figure (12) Percentage of achieved power consumption to the target (2011-2015)	13
Figure (13) Percentage of achieved breakdowns to the target from 2011 to 2015	14
Figure (14) Percentage of achieved reliability factor to the target from 2011 to 2015	14
Figure (15) Attempts to decrease crushers' Incident hours	
Figure (16) Pareto analysis for Mechanical breakdowns' hours in 2014	
Figure (17) Pareto analysis for Mechanical breakdowns' frequency in 2014	
Figure (18) Pareto analysis for Mechanical breakdowns' hours in 2015	
Figure (19) Pareto analysis for Mechanical breakdowns' frequency in 2015	
Figure (20) Pareto analysis for Electrical breakdowns' hours in 2014	
Figure (21) Pareto analysis for Electrical breakdowns' frequency in 2014	
Figure (22) Pareto analysis for Electrical breakdowns' hours in 2015	
Figure (23) Pareto analysis for Electrical breakdowns' frequency in 2015	
Figure (24) Pareto analysis for Production breakdowns' hours in 2014	
Figure (25) Pareto analysis for Production breakdowns' frequency in 2014	
Figure (26) Pareto analysis for Production breakdowns' hours in 2015	37
Figure (27) Pareto analysis for Production breakdowns' frequency in 2015	
Figure (28) Pareto analysis for Instrumentation breakdowns' hours in 2015	
Figure (29) Pareto analysis for Instrumentation breakdowns' frequency in 2015	41
Figure (30) Position of metal detector in the process	46
Figure (31) Position of metal separator in the process	46
Figure (32) Benchmarking steps (Ingram, 2009)	48
Figure (33) Breakdowns related to drilling and blasting section	55
Figure (34) Breakdowns related to quarry operation section	55
Figure (35) Breakdowns related to crushers' operation section	56
Figure (36) Breakdowns related to fleet maintenance section	
Figure (37) Breakdowns related to clays and additives section	
Figure (38) Proposed cycle to ensure a continuous improvement process in place	

Abstract

The continuous pursuit of excellence is the underlying and ever present goal of the world's best companies and As a result of the Intensive competitiveness between cement companies in the present time, it has become necessarily to support continuous improvement and gain competitive advantages.

To make this possible, companies make use of efficient methods of improving performance and focusing on the optimal use of resources in order to survive in the competition.

Since the quarries are the main element to produce the raw material for cement industry, it was necessary to focus on operating quarries optimally. And since crushers considered as the main element in the quarry where the impact of all inputs will affect the crushers' performance directly, from this point of view this study has been done to maximize quarry performance through managing crushing plant breakdowns and to ensure a continuous improvement process in place.

Chapter (1): Introduction

Since reliability reflect the ability of a machine, or system to consistently perform its intended or required function or mission, on demand and without degradation or failure [1], we use crushing plant reliability factor (RF) in Lafarge cement Egypt plant as a one of the main key performance indicators to measure and monitor quarry performance. Recently we noticed that we didn't achieve crushing plant Reliability factor target, so this study have been done to highlight the reasons that mostly affect crushing plant (RF), and to find out a certain approach that helps to increase reliability factor and thus quarry performance and to ensure continuous, sustainable improvement process in place.

1.1 Lafarge Cement Egypt (LCE) Plant Highlights:

Lafarge Cement Egypt plant - shown in figure (1) - arranged as the second plant all over the world in terms of cement production [2] with a total production capacity of about 10.6 million tons of cement per year.

Figure (1) Lafarge Cement Egypt Plant (LCE)

1.1.1 Lafarge Cement Egypt Plant Equipment:

The plant has two crushing lines, four raw mills, five kilns, Seven cement mills, one pet coke mill, and fourteen packing machine.

1.1.2 Plant Location:

Lafarge cement Egypt Plant located 100 km south-east from Cairo as shown in figure (2).

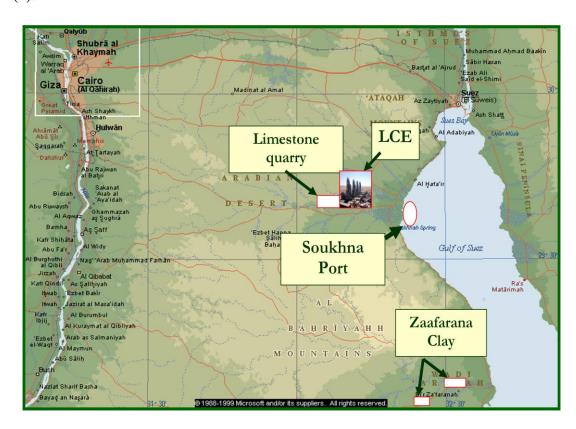


Figure (2) Lafarge Cement Egypt plant location

1.2 El Sokhna Limestone Quarry Highlights.

El Sokhna limestone quarry considered as a one of the biggest limestone quarries in Lafarge cement group, the quarry production capacity is 45,000 tons raw mix per day, with a crushing plant consists of two crushing lines 1400-ton/hour capacity each. The quarry has six working benches (each bench height is about 25 m), the average bench width is around 50 m, each level has two ways for maneuvering needs as shown in figure (3), the roads length exceeds 20 km, and the overburden thickness is about 0.5 m mainly consists of limestone fragments and it doesn't need special activities in most cases.

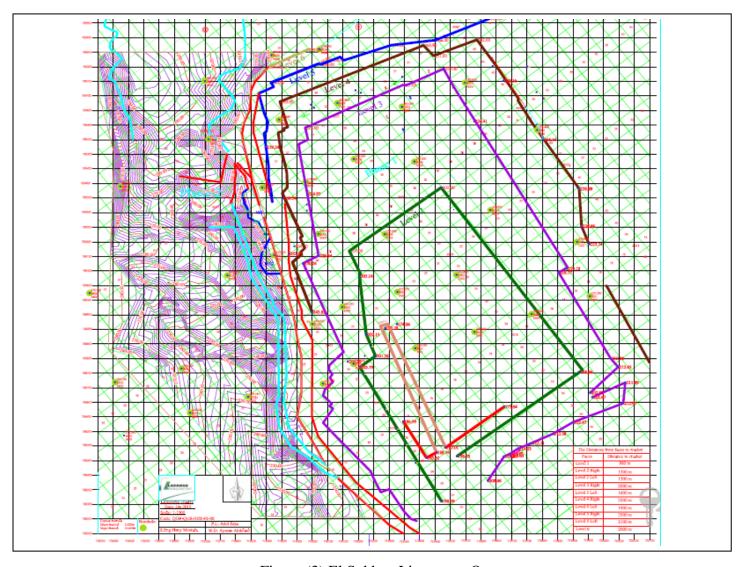


Figure (3) El Sokhna Limestone Quarry

1.2.1- Quarry sections.

The quarries department consists of planning and Exploration team, drilling and blasting team, quarry operation team, crushers' operation team, clays and additives team, and fleet maintenance team. As shown in figure (4).

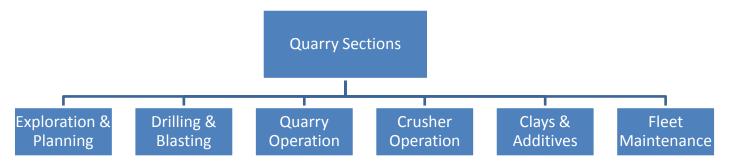


Figure (4) Quarry Sections

1.2.2- Quarrying Activities.

Quarrying activities in el Sokhna limestone quarry – as shown in figure (5) - starts with removing overburden (mainly a, then drilling and blasting, loading and hauling, crushing, and finally stacking the raw material into storages.

Figure (5) Quarrying activities in El Sokhna Limestone quarry

1.2.3- Crushing Plant Highlights.

The crushing plant consists of two similar crushing lines as shown in figure (6), each line consists of two crushing stages, Jaw crusher for the primary stage with 1200 ton/hour capacity, and Impact crusher for the secondary stage with 1400 ton/hour capacity. As shown in figure (7).

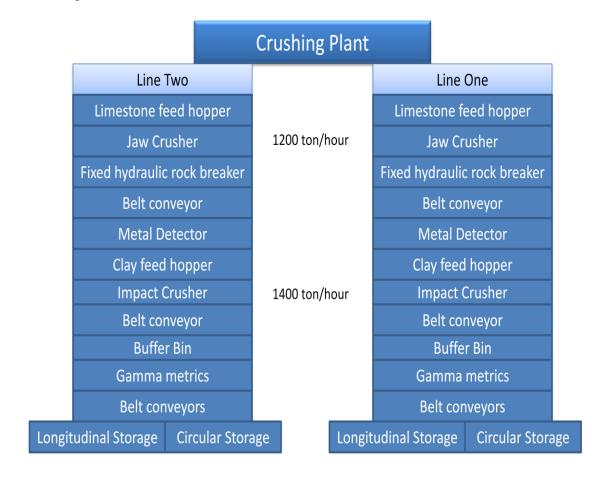


Figure (6) Crushing plant lines