Recent Trends in Treatment of

Diabetic Retinopathy

An Essay Submitted for partial fulfillment of the requirement of MASTER DEGREE in Ophthalmology

By

Dalia Yossef Farag El-Banna (M.B., B.Ch)

Supervised by

Prof. Dr. Bahaa El-Din Abdallah Aly

Professor of Ophthalmology
Faculty of Medicine, Ain Shams University

Dr. Mahmoud Abdelmeguid Abdellatif

Lecturer of Ophthalmology
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2011

الطرق الحديثة في علاج الاعتلال الشبكي الطرق الحديثة في علاج الاعتلال الشبكي

رسالة مقدمة لاتمام دراسة الماجستير في طب و جراحة العيون

مقدمة من

الطبيبة / داليا يوسف فرج البنا بكالوريوس الطب والجراحة كلية الطب - جامعة المنصورة

تحت اشراف

الأستاذ الدكتور/ بهاء الدين عبد الله على أستاذ طب و جراحة العيون عين شمس علية الطب ـ جامعة عين شمس

الدكتـور/ محمود عبد المجيد عبد اللطيف مدرس طب و جراحة العيون كلية الطب ـ جامعة عين شمس

> كلية الطب جامعة عين شمس 2011م

SUMMARY

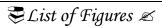
Diabetic retinopathy (DR) remains one of the leading causes of visual morbidity. Worldwide, there are approximately 194 million people with diabetes, and this number is likely to increase to 334 million by 2025. DR is divided into two major forms: non-proliferative and proliferative.

After 20 years with the disease, 60% of type-2 diabetics and virtually 100% of type-1 diabetics will manifest some form of retinopathy. Generally, the prevalence of retinopathy at diagnosis of type-1 diabetes is reportedly low, between 0% and 3% while a higher proportion of those with newly diagnosed type-2 diabetes have evidence of DR 6.7–30.2%.

Eyes with obvious foveal involvement by edema or lipid are categorized as "severe DME". Eyes with edema and/or lipid relatively distant from the macula are graded as "mild DME", "Moderate DME" was used to identify cases in which retinal thickening and/or lipid are close to the fovea.

The exact mechanism by which diabetes causes retinopathy remains unclear, but several theories have been postulated to explain the typical course and history of the

LIST OF CONTENTS


Contents	Page
• List of Figures.	I – III
• List of Tables.	IV
List of Abbreviations.	V – VII
Introduction.	1 – 4
Aim of Work.	5
Anatomy of the Retina.	6 – 22
Epidemiology of Diabetic Retinopathy.	23 – 29
Pathogenesis of Diabetic Retinopathy.	30 – 48
Diagnosis of Diabetic Retinopathy.	49 – 67
Management of Diabetic Retinopathy.	68 – 113
Summary.	114 – 118
• References.	119 – 153
Arabic summary.	i - iii

LIST OF FIGURES

No.	Figures	Page
1	The retina.	7
2	The macular regions.	8
3	Layers of the retina.	13
4	Endothelial cell tight junctions.	20
5	Prevalence of retinopathy is different in type 1	27
	and type 2 diabetes.	
6	The four biochemical pathways that lead to	32
	diabetic retinopathy.	
7	The hexosamine pathway.	35
8	Focal maculopathy.	43
9	Diffuse maculopathy.	44
10	Color photograph and fundus fluorescein	45
	angiography demonstrating petaloid pattern of	
	fluorescein leakage in a diabetic patient with	
	CME.	
11	Fluorescein angiography showing ischemic	46
	maculopathy.	
12	ME Classification according to morphology in	47
	OCT.	

🕏 List of Figures 🗷

13	ME Classification based on the existence of	48	
	epiretinal trtraction in OCT.		
14	Clinically significant macular oedema.	51	
15a	Normal test view of Amsler grid.	52	
15b	View in eye with diabetic macular edema.		
16	Normal retina with fluorescein angiography.		
17	Microaneurysms at the posterior pole.		
18	Microaneurysms.		
19	Microaneurysms; Two minutes later.	58	
20	CSME with hard exudates in the fovea.		
21	Capillary dropout around the fovea and in the	59	
	temporal macula.		
22	OCT tomogram of a normal fovea and optic disc	64	
	taken along the papillomacular axis.		
23	Appropriate laser burns.	72	
24	Severe non-proliferative diabetic retinopathy	74	
	before and after photocoagulation treatment.		
25	Burns in the cornea.	79	
26	Characteristic laser lenticular burn.	80	
27	Moderate vitreous hemorrhage after laser	81	
	treatment.		
28	Povidone iodine use before IVTA.	86	

29	Topical anesthetic eye-drops before IVTA.	87
30	Sterile caliber and eye stabilization during IVTA.	88
31	Retisert implant.	
32	Medidur implant.	
33	Dexamethasone drug delivery system (DDS).	94
34	4 Percentage of patients treated with Pegaptanib	
	sodium maintaining or gaining visual acuity	
	from baseline to week 36.	
35	Fundus photo and OCT before and after with IV-	98
	pegaptanib.	
36	Horizontal and vertical OCT for DME before and	101
	after IV Avastin	

LIST OF TABLES

No.	Tables	Page
1	Distinguishing features of the Retinal Rods and	14
	Cones.	
2	International Clinical Diabetic Retinopathy	40
	Disease Severity Scale.	
3	International Clinical DME Disease Severity	41- 42
	Scale.	
4	Retinal thickness measured by OCT.	64-65
5	Panretinal laser treatment.	72
6	Characters of laser for treatment of DME.	75

LIST OF ABBREVIATIONS

Abcg2	ATP-Binding Cassette Transporter g2
ACE	Angiotensin Converting Enzyme
AGEs	Advanced Glycation End Products
ARMD	Age Related Macular Degeneration
BCVA	Best Corrected Visual Acuity
BRB	Blood Retinal Barrier
BRVO	Branch Retinal Vein Occlusion
CMT	Central Macular Thickness
CRT	Creatine Transporter
CRVO	Central Retinal Vein Occlusion
CSME	Clinically Siginificant Macular Edema
DAG	Diacylglycerol
DCCT	Diabetic Control and Complication Trial
DM	Diabetes Mellitus
DME	Diabetic Macular Edema
DR	Diabetic Retinopathy
ENT2	Equilibrative Nucleoside Transporter 2
ERMs	Epi-Retinal Membranes
ETDRS	Early Treatment Diabetic Retinopathy Study
Fab	Antigen-Binding Fragment
FAZ	Foveal Avascular Zone
FDA	Food and Drug Administration
FFA	Fundus Fluorescine Angiography
GAPDH	Glyceraldehyde-3-Aldehyde Dehydrogenase
GLUT1	Glucose Transporter 1

🕏 List of Abbreviations 🗷

HMG-CoA	Hydroxy-Methl-Glutaryl Co-enzyme A
IGF-1	Insulin-like Growth Factor-1
ILM	Iinternal Limiting Membrane
IOP	Intra-Ocular Pressure
IRMA	Intra-Retinal Microvascular Abnormalities
IVTA	Intra-Vitreal Triamcinolone acetonide
JAM	Junction Adhesion Molecule
LAT1	L-type Amino Acidtransporter 1
MAGI	Membrane- Associated Guanylate Kinases
	with Inverted domain structures
MCT1	Monocarboxylate Transporter 1
mdr1a	Multidrug Resistance 1a
mf-ERG	Multi-focal Electroretinogram
MUPP1	Multi-Pdz Protein-1
MVL	Moderate Visual Loss
NADH	Nicotinamide Adenine Dinucleotide
NADPH	Nicotinamide Adenine Dinucleotide Phosphate
Nd:YAG	Neodymium: Yttrium-Aluminium-Garnet
NOS	Nitrous Oxide Synthase
NPDR	Nonproliferative Diabetic Retinopathy
NV	Neovacularization
Oatp1a4	Organic Anion Transporter Polypeptide 1a4
OCT	Optical Coherence Tomography
PDR	Proliferative Diabetic Retinopathy
PGF	Placental Growth Factor
PKC	Protein Kinase C

🕏 List of Abbreviations 🗷

PPV	Pars Plana Vitrectomy
PRP	Pan-Retinal Photocoagulation
PSC	Posterior Sub-Capsular
RBX	Ruboxistaurin mesylate
ROS	Reactive Oxygen Species
RPE	Retinal Pigment Epithelium
RTA	Retinal Thickness Analyzer
RVO	Retinal Vein Occlusion
SDM	Sub-threshold Diode Micro-pulse
SLT	Scanning Laser Tomography
TauT	Taurine Transporter
TGF-ß	Transforming Growth Factor ß
UKPDS	United Kingdom Prospective Diabetes Study
VEGF	Vascular Endothelial Growth Factor
VPF	Vascular Permeability Factor
WESDR	Wisconsin Epidimiologic Study of Diabetic
	Retinopathy
WESDR	Wisconsin Epidimiologic Study of Diabetic
	Retinopathy
YLF	Yttrium-Lithium-Flouride
ZO	Zonula Occludens

INTRODUCTION

Diabetic retinopathy is an important cause of visual morbidity. It damages retinal blood vessels, resulting in the breakdown of the blood-retinal barrier and increased vascular permeability (*Williams et al.*, 2004).

Diabetic retinopathy is the most common cause of legal blindness in individuals between the ages of 20 and 65 years. It is subdivided into non-proliferative and proliferative diabetic retinopathy. Non-proliferative diabetic retinopathy is graded as mild, moderate, or severe depending on the number of microaneurysms, intraretinal heamorrhage, venous beading, intraretinal microvascular abnormalities (IRMAs) and cottonwall spots. Proliferative diabetic retinopathy is characterized by epiretinal outgrowth of new vessels and finally fibrous membrane formation (*Ulbig & Hoops*, 2000).

The prevalence increases with the duration of diabetes, and nearly all persons with type 1 diabetes and more than 60% of those with type 2 have some retinopathy after 20 years (*Quresh et al.*, 2007).

Retinal hypoxia is the natural consequence of retinal vascular dysfunction associated with diabetic eye disease. In

response to local hypoxia, affected tissues in the retina and elsewhere upregulate the production of vascular endothelial growth factor (VEGF). VEGF is a potent angiogenic stimulus, and it also induces vascular permeability up to 50,000 times more potent than that of histamine. This will result in breakdown of the blood-retina barrier and accumulation of extracellular fluid with the subsequent development of macular edema (*Ferrara & Gerber*, 2003).

Fundus Fluorescein angiography (FFA) is generally used in diagnosis and treatment planning. The method is useful in detecting early alterations of the blood-retinal barrier, capillary closure, and microaneurysm formation (*Cunha-Vaz*, 2000).

Optical coherence tomography (OCT) is a non contact, non invasive imaging that obtains high resolution cross sectional imaging of the retina and has been shown to be effective in documenting various pathologies of the posterior segment, it is capable of quantifying the macular thickening in diabetic macular edema, it even detect thickness in absence of any abnormality on slit-lamp examination (*Rivellese et al.*, 2000).

Laser treatment of diabetic retinopathy is still the gold standard of treatment for focal and diffuse diabetic macular edema and proliferative diabetic retinopathy. When properly treated, the 5-year risk of blindness is reduced by 90% in patients with proliferative diabetic retinopathy and the risk of visual loss from macular edema is reduced by 50% (*Lang*, 2007).

Intravitreal triamcinolone acetonide (IVTA) has been applied in exponentially increasing frequency for various intraocular neovascular diseases, including diabetic macular edema, proliferating diabetic retinopathy, neovascular glaucoma due to proliferative diabetic retinopathy (*Jonas J*, 2007).

Intravitreal Bevacizumab (*Avastin*®) injections may have a beneficial effect on macular thickness and visual acuity (VA), independent of the type of macular edema that is present. Therefore, in the future this new treatment modality could complement focal/grid laser photocoagulation in DME. (*Arevalo & Garcia-Amaris*, 2009).

Newer therapeutic options are directed at the causative mechanisms of diabetic retinopathy. Experimental and clinical evidence suggests that pharmacological compounds like somatostatin analogues and protein kinase C (PKC) inhibitors may be effective in the treatment of diabetic retinopathy (*Lang*, 2007).

Somatostatin analogues remain the only nondestructive therapeutic alternative to patients with proliferative diabetic retinopathy who have failed to respond to panretinal photocoagulation (*Boehm B, 2007*).

Surgery for diabetic retinopathy addresses late secondary complications of a primary microvascular disease. The functional outcome of surgery depends on the degree of retinal ischemia and may be disappointing even in technically and anatomically successfully operated eyes (*Horst Helbig*, 2007).