ROLE OF TRANSSPHENOIDAL APPROACH IN THE MANAGEMENT OF PITUITARY ADENOMAS WITH AND WITHOUT SUPRASELLAR EXTENSION

A Thesis

Submitted for partial fulfillment of M.D. Degree in **Neurosurgery**

By

Mohammed Hammad El-Saved

(M.B.B Ch, M.Sc.)
Faculty of Medicine - Benha University

Under supervision of

Prof. Dr. Alaa El-Deen Abd El-Hay

Professor of Neurosurgery Faculty of Medicine - Ain Shams University

Prof. Dr. Fathy El-Noss

Professor of Neurosurgery Faculty of Medicine - Banha University

Prof. Dr. Mohammed Ashraf Ghobashy

Professor of Neurosurgery
Faculty of Medicine - Ain Shams University

Prof. Dr. Khalid Mohammed El-Bahy

Professor of Neurosurgery
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2011 دور جراحة أورام الغدة النخامية عن طريق عظمة سفينويد في علاج الأورام الممتدة فوق السرج التركى والغير ممتدة

بحث توطئة للحصول على درجة الدكتوراه في جراحة المخ والأعصاب

مقدمه من الطبيب / محمد حماد السيد ماجستير الجراحة العامة

تحت إشراف

الأستاذ الدكتور/ علاء الدين عبد الحي

أستاذ جراحة المخ والأعصاب كلبة الطب - جامعة عين شمس

الأستاذ الدكتور / فتحكى النص

أستاذ ورئيس قسم جراحة المخ والأعصاب كلية طب بنها - جامعة بنها

الأستاذ الدكتور / محمد أشرف غباشي

أستاذ جراحة المخ والأعصاب كلية الطب – جامعة عين شمس

الأستاذ الدكتور / خالد محمد الباهي

أستاذ جراحة المخ و الأعصاب كلية الطب – جامعة عين شمس

2011

Acknowledgement

First of all thanks to Allah, the most beneficent and most merciful, to him all my deeds belong.

I would like to express my sincere appreciations to **Prof. Dr. Alaa El-Deen Abd El-Hay** Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his great support and guidance that make this work possible.

I wish to express my utmost gratitude and deep appreciation to **Prof. Dr. Fathy El-Noss** Professor of Neurosurgery, Faculty of Medicine, Benha University for his support to get my scholarship in the USA and for his follow up my progress which was a real encouragement.

I am deeply grateful to **Prof. Dr. Mohammed Ashraf Ghobashy** Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for being with me in times of need, for the effort he paid and for his kind guidance.

I am greatly Honored to express my endless gratitude to **Prof. Dr. Khaled El-Bahy** Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his sincere support, for the time he spent with me, for the effort he paid and for his kind guidance in every step and meticulous revision until this work saw the light.

I will never forget the sincere help and support I found during my scholarship in the USA, from **Prof Dr. Khaled Aziz** Assistant Professor of Neurological Surgery and the director of the center for complex intracranial surgery in Allegheny general Hospital Pittsburgh, PA.

I am greatly honored to say that part of this work was done at the Jho Institute for minimally invasive neurosurgery by the world wide innovative surgeon **Hae- Dong Jho**. It was really great chance to work with him and to gain knowledge and experience from him.

Last but not least, I am very grateful to all my Professors in the Dept. of Neurosurgery at Ain Shams University, **Prof. Dr. Adel Hakeem, Prof. Dr. Hossam El-Hussieny and Prof. Dr. Ali Kotb**. Throughout the past 5 years I learned a lot from them not only the scientific knowledge and experience but also the good manners and behaviors.

Aim of the work

The aim of this study is to evaluate the role of the transsphenoidal surgery using the different techniques, microscopic and endoscopic, in the management of pituitary adenomas with sellar and with suprasellar extension. Also to compare between the classic microscopic and endoscopic transsphenoidal approach for treatment of pituitary adenomas, regarding the extent of the tumor removal, clinical improvement after surgery, development of complications, and the convenience related to both techniques.

Contents

Introdu	ction1
Review	of literature
• H	listory and development of transsphenoidal
St	1rgery3
• R	elevant surgical anatomy of the transsphenoidal
A	pproach and development11
• P	hysiology of the pituitary gland40
• P	athology of pituitary adenomas45
• C	linical and radiological evaluation of pituitary
ac	denoma63
• N	Ianagement strategies for treatment of pituitary
ac	denomas81
• T	ranssphenoidal pituitary surgery89
Patients	s and Methods117
Illustra	tive cases137
Results	149
Discuss	ion171
Summa	ry and Conclusion194
Referen	ices197
Arabic	summary210

List of Charts

No	Chart	Page
1	The extent of tumor removal in the 2 different groups.	154
2	The extent of tumor removal among the tumors with suprasellar extension only	155
3	The extent of tumor removal among the tumors with suprasellar and parasellar extension	156
4	The extent of resection in the sellar tumors, tumors with suprasellar extension only and tumors with suprasellar and parasellar extension	159
5	The overall clinical improvement between the two groups	160
6	The degree of improvement among the nonfunctioning tumors in the two groups	161
7	The improvement in visual symptoms between the two groups	163
8	Hospital stay among both groups	164
9	Use of nasal pack and fat graft among both groups:	165
10	The early complications related to surgery in the two groups.	167
11	The post operative follow up and further treatment elicited in both studied groups	169

List of figures

No.	Fig.	Page
1	Sagittal and axial multiplaner CT scan of an Egyptian mummy	3
2	Photographs showing key personalities in the evolution of the transsphenoidal approach	10
3	A) The ethmoid bone anatomy. B) Bottom view of the ethmoid bone	11
4	Relations of the ethmoidal sinus to other sinuses. A) The ethmoid sinus from below. B) Saggital section through the ethmoidal sinus	12
5	Anatomy of the nasal cavity. A) The Pyriform aperture. B) the chona	12
6	A) The medial nasal wall or the nasal septum. B) The lateral nasal wall	13
7	Anatomical landmarks of the Lateral nasal wall. A) Superior, middle and inferior turbinate in relation to the sphenoid sinus. B) The sphenopalatine foramen at the tail of the middle turbinate	14
8	Blood supply of the nasal cavity. A) The nasal septum. B) The lateral nasal wall	15
9	Endoscopic anatomy of the nasal cavity. A) introducing the scope parallel to the nasal floor .B) the chona, the naso pharynex moving the scope a little bi up.	15
10	A) The sphenoethmoidal recess. B) The sphenoid ostium in the SER medial to the superior turbinate	16
11	Parts of the sphenoid bone. A) Posterior view. B) Anterior view	17

12	Types of sphenoid sinus	18
13	Walls of the sphenoid sinus. A) Anterior wall in coronal section. B) Lateral walls in coronal section	19
14	Prominences and recesses within the sphenoid sinus. A) SF=sellar floor,	20
15	Sphenoid sinus endoscopic anatomy. A) Exposure of the anterior wall sphenoid sinus through the right nasal cavity. B) anterior sphenoidotomy.	22
16	Endoscopic classification of the segments of the carotid prominence	23
17	Superior and lateral views showing the diaphragm. A and B The diaphragma sellae is continuous anteriorly with the dura of the tuberculum sellae and the anterior cranial fossa, posteriorly with the dura of the dorsum sellae and clivus, and laterally with the dura of the roof and lateral wall of the cavernous sinus.	24
18	Superior surface of a gland	27
19	The pituitary stalk can be divided into 3 parts according to their relationship with the arachnoid sleeve enveloping thepituitary stalk	28
20	Cadaveric dissection showing the relationship between the basal arachnoid membrane and the pituitary stalk	28
21	A) Relationship of the pituitary gland to the cavernous sinus and its contents.B) Relation to the cavernous carotid artery	30
22	Sagittal sections of the sellar region showing variations in the intercavernous venous connections within the dura	32
23	Sagittal sections (left) and superior views (right) of the sellar region showing the optic nerve and chiasm, and carotid artery	33
24	Embryogenesis of the pituitary gland	35
25	Remnants of the course of Rathke's pouch.	36

26	Diagrammatic representation of the vascular anatomy of the pituitary gland	41
27	The KNOSP classification diagrams and corresponding coronal MRI.	52
28	Densely granulated growth hormone cell adenoma	56
29	Sparsely granulated growth hormone cell adenoma	56
30	Dynamic sellar MRI study for pituitary microadenoma. (A) Coronal dynamic postcontrast image obtained 20 seconds after injection of contrast material(B) 40 seconds after injection(C) 80 seconds after injection(D) Coronal postcontrast T1-weighted image	66
31	Macroadenoma. (A) Sagittal T1-weighted image.(B) Coronal postcontrast T1-weighted image.	67
32	(A, B) Visual fields in a patient with a pituitary tumor. (C) T1-weighted coronal MRI scan .	69
33	Patient positioning and surgical team.	92
34	Standard sublabial transsphenoidal approach: incision and submucosal dissection	95
35	Submucosal dissection. (A) The quadrangular cartilage can be mobilized from its attachment to the perpendicular plate of the ethmoid and the vomer. (B) Further posterosuperior dissection is performed toward the rostrum of the sphenoid sinus	95
36	Resection of the sphenoid sinus by using the sphenoid ostia to gain access	96
37	Dural opening.	96
38	Tumor removal.	97

39	Endonasal transseptal approach (A and B, submucosal endonasal approach	98
40	Septal displacement approach, sagittal view of re-op incision behind septum	99
41	Right nostril approach, nasal phase of the procedure	104
42	Right nostril approach, nasal phase of the procedure. a, exploration of the inferior part of the nasal cavity. b, view of the anatomic structures through the choana. c, exploration of the superior part of the nasal cavity	104
43	Sphenoid phase. a, detachment of the nasal septum from the sphenoid rostrum . b, exposure of the anterior wall of the sphenoid sinus.	105
44	Right nostril approach, sphenoid phase of the procedure. a, enlargement of the anterior sphenoidotomy . b and c, exposure of the sphenoid cavity.	106
45	Sellar phasee. a, opening of an intact sellar floor b, enlargement of the sellar opening.	107
46	Resection of tumor. A, Dural incision. B, Subdural plane developed. C, Sequential removal of tumor. D, Reconstruction of sellar floor	110
47	The endoscope tower and the lens cleaning device beside it	121
48	The endoscope with the sheath connected to the lens cleaning device, the scope is attached to pneumatic scope holder	121
49	Different length of the slender high speed drill	121
50	The manual scope holder	122
51	Endoscopic team placement	124

52	Coagulation of the mucosa of the anterior wall sphenoid sinus	124
53	Endoscopic view, sellar pulge and clival indentation	124
54	Endoscopic view, opening the anterior bony wall of the sell.	125
55	Coagulation of the dura with a suction coagulator along the peripheral margin	125
56	Opening of the dura mater with a blunt hook.	126
57	Tumor removal with a ring curet and suction canulas from the medial wall of the cavernous sinus	126
58	The thickened arachnoid membrane and the suprasellar portion of the tumor descend towards the sell at the end of the tumor removal	127
59	Sellar reconstruction with abdominal fat graft and the bone remained from the sella wall.	128
60	Augmenting the sellar reconstruction with titanium mesh placed between the dura and the bone.	128
61	Sublabial incision with subperiosteal dissection of the mucosa to expose the rostrum of the maxilla	130
62	Microscopic view after placing the sphenoid speculum exposing the sphenoid rostrum.	130
63	Microscopic view, opening of the sellar floor and exposure of the sellar dura.	131
64	Microscopic view, tumor removal has been conducted in systematic fashion	131
65	Microscopic view through the sphenoid speculum	132

List of Tables

No.	Table	Page
1	Neuroanatomical classification of pituitary adenomas	47
2	Clinicopathological classification of pituitary adenomas	48
3	WHO Classification of pituitary tumors, 2004 (WHO)	50
4	Differential diagnosis of sellar masses	80
5	Study demographics among both groups	150
6	Clinical types of pituitary adenomas among the 2 groups	151
7	Size and extension of pituitary adenomas among the two groups.	151
8	Previous pituitary surgeries among both groups	152
9	Clinical presentations among both groups	153
10	The extent of tumor removal in the 2 different groups	153
11	The extent of tumor removal among the tumors with suprasellar extension only:	154
12	The extent of tumor removal among the tumors with suprasellar and parasellar extension	155
13	The extent of resection in the sellar tumors, tumors with suprasellar extension only and tumors with suprasellar and parasellar extension	157
14	The extent of resection in the sellar tumors and tumors with suprasellar extension only	157

15	The extent of resection in the sellar tumors and tumors with suprasellar and parasellar extension	158
16	The extent of resection in the tumors with suprasellar extension only and tumors with suprasellar and parasellar extension	158
17	The overall clinical improvement between the 2 groups	159
18	The degree of clinical improvement among the nonfunctioning tumors between the 2 groups	160
19	The improvement among the functioning tumors between the 2 groups	161
20	The improvement in visual symptoms between the two groups	162
21	The convenience related to surgery between both groups	163
22	Student t test to compare the hospital stay in the 2 groups.	164
23	Z-test for comparison between 2 proportions	164
24	Z-test for comparison between 2 proportions	165
25	The early complications related to surgery between the two groups	166
26	The late complications related to surgery between the two groups	167
27	Z-test for comparison between 2 proportions	168
28	The post operative follow up and further treatment elicited in both studied groups	168
29	Z-test for comparison between 2 proportions	170

Introduction

Since transsphenoidal approaches were developed in the early 1900s, the basic surgical techniques have not changed much in transsphenoidal pituitary surgery besides adoption of the operating microscope in the 1960s by Hardy.

A transseptal approach via submucosal dissection along the nasal septum via a sublabial or transfixional incision guides a surgeon to the sphenoidal sinus. Through a narrow surgical tunnel created with a transsphenoidal speculum retractor placed through a transseptal route, surgical removal of the pituitary tumor is carried out under the operating microscope. After tumor removal, the nasal cavity has to be packed in order to approximate the dissected nasal mucosa together.

Pituitary microsurgeons have demonstrated good surgical outcomes and low risks associated with microscopic transsphenoidal pituitary surgery for years. Thus, the microscopic transsphenoidal pituitary surgery has been a gold standard surgical method when patients with pituitary adenomas require surgical treatment. Nevertheless, this relatively benign transsphenoidal surgery can still be improved further as rhinologic sinus operations have changed in time.

With an advance in endoscopic optics and video-images, an endoscope enables the surgeon to examine the nasal cavity as well as to perform surgical procedures without conventional skin incisions. This endoscopic surgical concept in sinus surgery has been adopted in transsphenoidal pituitary surgery.

Contrary to narrow microscopic views, endoscopic views are panoramic. In addition, an endoscope enables a surgeon to inspect the tumor resection cavity directly by the direct placement of an endoscope into the sella, to inspect the suprasellar region directly with application of angled lens endoscopes, and to approach the skull base at the anterior cranial fossa and clivus readily.

With an addition of endoscopy to the relatively benign nature of transsphenoidal surgery, endoscopic endonasal pituitary surgery has provided minimal postoperative discomfort, short hospital stay and quick postoperative recovery.

In this work we will discuss in details the classic microscopic and endoscopic transsphenoidal approaches with main focus on:The history and development of the transsphenoidal surgery with emphasis on the effect of technology on improving this minimally invasive surgery.

Also we will review the relevant microscopic and endoscopic anatomy related to the approach, the physiology of the adenohypophysis and neurohypophysis, the pathology of pituitary adenomas, the evaluation and management of pituitary adenomas and the perioperative management of patients with pituitary adenomas undergoing pituitary surgery.

The different techniques of performing microscopic and endoscopic transsphenoidal pituitary surgery will be discussed in full details.

We will study the results of transsphenoidal pituitary surgery on tumors with sellar and suprasellar extension as well as the tumors with parasellar extension using the different techniques.

Then we will compare between the classic microscopic and endoscopic transsphenoidal approach for treatment of pituitary adenomas, regarding the extent of the tumor removal, clinical improvement after surgery, development of complications, the follow up and the further treatment needed, and the convenience related to both techniques.

All the patients will be evaluated before surgery by clinical examination, hormonal assay, visual assessment and radiological investigations. Then all of them will be reassessed again using the same preoperative parameters after surgery in a follow up period will be determined accordingly.