

Ain Shams University
Faculty of Medicine
Department Of Anesthesiology and Intensive Care

Different Anesthetic Techniques for Radiofrequency Ablation of Hepatocellular Carcinoma

A protocol of thesis submitted for partial fulfillment of M.D. degree in anesthesiology

By Marwa Ahmed Khairy Mohammed Mortada

M.B.B.Ch-Ain Shams University-2003 M.Sc in Anesthesiology-Ain Shams University-2007 Assistant lecturer in Anesthesiology-Ain Shams University

Under supervision of

Prof. Dr. Amir Ibrahim Salah

Professor of Anesthesia and Intensive care. Faculty of Medicine, Ain-Shams University.

Prof. Dr. Ahmed Kamal El Dorry

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Dr. Hanan Mahmoud Farag

Assistant professor of Anesthesia and Intensive care Faculty of Medicine, Ain-Shams University.

Dr. Dalia Abd El Hamid Mohamed

Assistant professor of Anesthesia and Intensive care Faculty of Medicine, Ain-Shams University.

Dr. Mostafa Gamal El Dein Mahran

Lecturer of Anesthesia and Intensive care Faculty of Medicine, Ain-Shams University.

Ain Shams University Faculty of Medicine 2011

بسم الله الرحمن الرحيم

إهالوا سبحانك لا علم انا إلا ما علم علم انا إلا ما علمتنا إنك أنت انتصالحين

صدق الله العظيم

(البقرة: ٣٢)

ACKNOWLEDGEMENTS

Thanks are all to God, for blessing this work until it reached its end, as a little part of his generous help throughout my entire life.

I can hardly find the words to express my gratitude to Prof. Dr. Amir Ibrahim Salah; Professor of Anesthesia, Intensive care and Pain Management, Faculty of Medicine, Ain Shams University, for his close supervision, continuous help and encouragement throughout the whole work.

It has been an honour working under the supervision of **Prof. Dr. Ahmed Kamal El Dorry, Professor of Radiodiagnosis,** Faculty of Medicine, Ain Shams University.

I'm greatly indebted to Assistant Prof. Dr. Hanan Mahmoud Farag, Assistant Professor of Anesthesia, Intensive care and Pain Management, Faculty of Medicine, Ain Shams University, for her continuous support throughout the whole work.

I'm greatly thankful to Assistant Prof. Dr. Dalia Abd El Hamid Mohamed, Assistant Professor of Anesthesia, Intensive care and Pain Management, Faculty of Medicine, Ain Shams University, for the great help and cooperation during the whole work.

I'd like also to express my sincere appreciation and gratitude to Dr. Mostafa Gamal El Dein Mahran Lecturer of Anesthesia, Intensive care and Pain Management, Faculty of Medicine, Ain Shams University, for his great help and continuous assistance.

CONTENTS

List of tables	I
List of figures	III
List of abbreviations	VI
Introduction	1
Aim of the work	5
Review of literature	7
Hepatocellular Carcinoma	8
Radiofrequency Ablation for Hepatocellular Carcinoma	23
Anesthetic Management of Cirrhotic Patients	37
Pharmacology of Anesthetic Drugs Used	67
Patients and Methods	96
Results	105
Discussion	123
Conclusion	136
Summary	138
References	142
Arabic Summary	

LIST OF TABLES

Table No.	Title	Page No.
Table 1	Serum Alpha-Fetoprotein (AFP) Determination in Liver Disease	8
Table 2	World Health Organization Performance Status grades	17
Table 3	Barcelona-Clinic Liver Cancer (BCLC) criteria the indications and contraindications for RFA of HCC	31
Table 4	Common Causes of Cirrhosis	38
Table 5	Clinical features of cirrhosis	40
Table 6	Laboratory tests and findings in cirrhosis	42
Table 7	Diagnostic Criteria for the Hepatopulmonary Syndrome	49
Table 8	Diagnostic criteria for Hepatorenal syndrome	53
Table 9	Showing Child – Turcott - Pugh classification	56
Table 10	Moemen Objective Scoring System	57
Table 11	Uses and Doses of Intravenous Propofol	82
Table 12	Modified Aldrete Scoring System	103
Table 13	Patient characteristics; Age, Weight, Procedure Time and Anesthetic Time.	106

Table No.	Title	Page No.
Table 14	Patient characteristics as regards sex	106
Table 15	Patient characteristics as regards numbers of tumors ablated	107
Table 16	Induction time and Intubation time, Spontaneous eye opening, Extubation time and Orientation time.	109
Table 17	Undesirable response during induction: Involuntary movements, Laryngospasm, Restlessness, Breath holding, Coughing and Pain on injection.	110
Table 18	Changes in the mean arterial pressure in various times through the operation.	112
Table 19	Changes in the heart rate in various times through the operation.	113
Table 20	Post operative nausea, vomiting.	116
Table 21	Post operative pain scores.	117
Table 22	Postoperative liver enzymes: ALT levels.	119
Table 23	Postoperative liver enzymes: AST levels.	120
Table 24	Cost Effectiveness.	121

List of Figures

Figure No.	Title	Page No.
Figure 1	Ultrasonographic image of hepatocellular carcinoma	12
Figure 2	Arterial phase CT scan demonstrating enhancement of hepatocellular carcinoma	13
Figure 3	Portal venous phase CT scan demonstrating washout of hepatocellular carcinoma	14
Figure 4	MRI of a liver with hepatocellular carcinoma	16
Figure 5	Barcelona Clinic Liver Cancer staging classification and treatment schedule	21
Figure 6	Radiofrequency (RF) ablation of a malignant liver tumor	26
Figure 7	A Tip of an expandable-type electrode.	28
Figure 8	Pathogenesis of ascites. Vasoconstrictor and antinatriuretic factors include norepinephrine, angiotensin II, aldosterone, and antidiuretic hormone	51
Figure 9	Chemical structure of propofol	68
Figure 10	Functional binding sites on the GABA receptor	71

Figure No.	Title	Page No.
Figure 11	Simulated time course of whole blood levels of propofol after an induction dose of 2 mg/kg.	76
Figure 12	Chemical structure of isoflurane	83
Figure 13	Chemical structure of sevoflurane	88
Figure 14	Comparison between three groups as regards sex.	107
Figure 15	Comparison between three groups as regards numbers of tumors ablated.T1=one tumor,T2=two tumors.	108
Figure 16	Showing comparison between the three groups as regard induction time and Intubation time.	109
Figure 17	Comparison between the three groups as regard: changes in the mean arterial pressure in various times through the operation.	112
Figure 18	Comparison between the three groups as regard: changes in the heart rate in various times through the operation.	114
Figure 19	Comparison between the three groups as regard Spontaneous eye opening (SEO), Extubation time (ET) and Orientation time (OT).	115

Figure No.	Title	Page No.
Figure 20	Comparison between the three groups as regard: post operative nausea and vomiting.	117
Figure 21	Comparison between the three groups as regard: post operative pain scores.	118
Figure 22	Comparison between the three groups as regard: ALT levels.	119
Figure 23	Comparison between the three groups as regard: AST levels.	120
Figure 24	Comparison between the three groups as regard: Cost Effectiveness.	122

List of Abbreviations

Abbrev	Meaning
μg	Micrograms
μL	Microliters
μmol	Micromole
ACTH	Adrenocorticotropic Hormone
AFP	Alpha-fetoprotein
ALP	Alkaline Phosphatase
ALT	Alanine Transaminase
AST	Aspartate Transaminase
BCLC	Barcelona Clinic Liver Cancer
C	Celsius
CBC	Complete Blood Count
CBF	Cerebral Blood Flow
CLIP	The Italian Cancer of the Liver Program
CLT	Cadaveric Liver Transplantation
cm	centimetres
$CMRO_2$	Cerebral Metabolic Rate
CNS	Central Nervous System
COPD	Chronic Obstructive Pulmonary
CPP	Cerebral Perfusion Pressure
CT	Computed Tomography
CTP	Child-Turcotte-Pugh Score
CUPI	The Chinese University Prognostic Index
d	Day
DD	Differential diagnosis
DDAVP	Diamino-8-D-arginine vasopressin
dL	Deciliter
EASL	European association for the study of the live
ECG	Electrocardiograph
EDTA	Ethylene Diamine Tetraacetic Acid
EEG	Electroencephalogram
ET	Extubation Time

Abbrev	Meaning
FFP	Fresh-frozen plasma
FiO ₂	Fraction of inspired oxygen
g	Grams
GABA	Gamma-Aminobutyric Acid
GFR	Glomerular Filtration Rate
h	Hours
HCC	Hepatocellular Carcinoma
HCV	Hepatitis C Virus
HPS	Hepatopulmonary Syndrome
HR	Heart Rate
HRS	Hepatorenal Syndrome
ICP	Intracranial Pressure
ICU	Intensive Care Unit
INR	International Normalization Ratio
IR	Ischemia-Reperfusion
IV	Intravenous
\mathbf{K}^{+}	Potassium
kg	Kilograms
kPa	kilopascal
L.E.	Egyptian Pound
LDLT	Live-Donor Liver Transplantation
LMA	Laryngeal Mask Airway
M 1	Metastatic Spread
MAC	The Minimum Alveolar Concentration
MAP	Mean Arterial Pressure
Max.	Maximum
MELD	Model for End-Stage Liver Disease
mEq/L	Milliequivalent Per Liter
mg	Milligrams
min	Minutes
ml	milliliters
mm	millimetres

Abbrev	Meaning
mmHg	Millimeter mercury
MRI	Magnetic Resonance Imaging
MSCT	Multislice Computed Tomography
N1	Lymph Node Involvement
N_2O	Nitrous Oxide
NA	Not Applicable
\mathbf{Na}^{+}	Sodium
ng	Nanograms
NMBAs	Neuromuscular Blocking Agents
OT	Orientation Time
PaCO ₂	Partial pressure of arterial carbon dioxide
PAO_2	Partial pressure of alveolar oxygen
PaO_2	Partial pressure of arterial oxygen
Patm	Atmospheric pressure
PBC	Primary biliary cirrhosis
PEEP	Positive End-Expiratory Pressure
PEI	Percutaneous Ethanol Injection
PH ₂ O	Partial pressure of water vapor at body
	temperature
PI	Propofol/Isoflurane
PP	Propofol/Propofol
PPH	Portopulmonary hypertension
PS	Performance Status
PSC	Primary sclerosing cholangitis
RF	Radiofrequency
RFA	Radiofrequency Ablation
RR	Respiratory Rate
SaO ₂	Arterial Oxygen Saturation
SD	Standard Deviation
sec	Seconds
SEO	Spontaneous eye opening
SS	Sevoflurane/Sevoflurane

Abbrev	Meaning
TACE	Transarterial Chemoembolization
ΓNM	Tumour-Nodes-Metastases
US	Ultrasound
'S.	Versus
rs	Years
χ	Alpha
3	Beta
∕-GT	Gamma-Glutamyl Transpeptidase

Introduction

Hepatocellular carcinoma (HCC) is a significant worldwide health problem. The burden of HCC has been increasing in Egypt with a doubling in the incidence rate in the past 10 years as it is the third common among cancers in men with >8000 new cases predicted by 2012. Up to 90% of HCC cases in the Egyptian population are attributed to HCV; Egypt has the highest prevalence of HCV in the world with ~13.8% of the population infected and seven million with chronic HCV liver disease (*Goldman et al, 2007*).

Patients with early-stage HCC should be considered for any of the available curative therapies, including surgical resection, liver transplantation and percutaneous image-guided ablation. Liver transplantation is the only option that provides cure of both the tumor and the underlying chronic liver disease. However, the lack of sufficient liver donation greatly limits its applicability. The optimal treatment for HCC is surgical excision with curative intent. Unfortunately, only 5% to 15% of newly diagnosed patients with HCC undergo a potentially curative resection. Image-guided percutaneous ablation is the best therapeutic choice for non-surgical patients with early-

stage HCC. While ethanol injection has been the chief percutaneous technique, radiofrequency ablation has emerged as the most effective method for local tumor destruction and is currently used as the primary ablative modality at most institutions (*Lencioni et al*, 2005a).

Radiofrequency (RF) tumor ablation refers to the direct application of radiofrequency energy therapy to a specific focal tumor (or tumors) in an attempt to achieve eradication, or substantial tumor destruction. Though the technique was described as early as 1891 for ablation of neurosurgical tumors, Rossi et al described the percutaneous ablation of hepatic tumors by radiofrequency current in 1993 (*Rossi et al*, 1996).

Radio-frequency ablation can be used percutaneously to treat liver tumors as well as laparoscopically or at laparotomy, where it can be combined with resection or utilized as the sole treatment modality. Although it is considered as a safe maneuver, complications following the procedure have been noted which may be related to the needle placement like bleeding, infection, tumor seeding along the needle tract, or damage to the duct, vessel or hollow viscera. General and