

Ain Shams University Faculty of Science Microbiology Department

COMPARISON BETWEEN CULTURE AND NON-CULTURE-BASED METHODS FOR DETECTION OF NOSOCOMIAL FUNGAL INFECTIONS IN INTENSIVE CARE UNIT PATIENTS

A thesis

Submitted as a part for fulfillment of master degree in Microbiology

By

LAMIA MOHAMMED TAWFIK RADY

Bachelor of Science, Faculty of Science,

Ain Shams University

Under supervision of

Dr. ADEL AHMED ELMEHALAW
Assistant Professor of Microbiology,
Faculty of Science,
Ain Shame University

Dr. SAMIA ABDOU GIRGIS

Assistant Professor of Clinical
Pathology, Faculty of Medicine,
Ain Shams University

جامعة عين شمس كلية العلوم قسم الميكروبيولوجي

مقارنة بين الطرق المزرعية و غير المزرعية في اكتشاف العدوى الفطرية المكتسبة داخل المستشفيات في مرضى وحدات العناية الفائقة رسالة مقدمة توطئة للحصول على درجة الماجستير من الطالبة / لمياء محمد توفيق راضى بكالوريوس العلوم كلية العلوم جامعة عين شمس

دكتورة / سامية عبده جرجس أستاذ مساعد الباثولوجيا الإكلينيكية كلية الطب جامعة عين شمس

دكتور / عادل أحمد المحلاوى أستاذ مساعد الميكروبيولوجى كلية العلوم جامعة عين شمس

تحت ا شراف

Declaration

This thesis has not previously been submitted for any other university. The refrences were being checked whenever possible; show the extent to which I have availed myself of the work of other authors.

Lamia Mohamed Rady

ACKNOWLEDGEMENT

I would like to express my gratitude to all those who gave me the possibility to complete this thesis. I want to thank Professor Doctor Adel Ahmed El Mehalawy ,Professor of Microbiology,Faculty of Science ,Ain —Shams University for giving me permission to commence this thesis in the first instance, to begin the necessary research work and who gave and confirmed this permission and encouraged me to go ahead with my thesis.

I am deeply indebted to my supervisor assistant Prof. Dr. SamiaAbdou, clinical pathology department, Faculty of medicine, ain Shams University whose help, stimulating suggestions and encouragement helped me in all the time of research for and writing of this thesis.

Lamia Rady

Table of Contents

List of Tables.	
List of Figures.	
1. Introduction	1
2. Review of literature	3
2.1. Nosocomial Fungal Infections	3
2.2. Candida	5
2.2.1. Pathogenicity and Epidemiology of Candida	8
2.2.2. Candida Species Associated with Disease	15
2.2.2.1. Oral Candidiasis	17
2.2.2.2. Vaginal Candidiasis	19
2.2.2.3. Disseminated Candidiasis	20
2.3. Methods of detection of Candida spp	25
2.3.1. Culture based methods	25
2.3.2. Non Culture based methods	29
3. Materials and Methods	31
3.1. Sampling and sampling sites	31
3.2. Reference strains.	32
3.3. Detection of Candida	33
3.3.1. Culture media	33
3.3.2. Non culture method (PCR)	34
3.3.2.1. Primer design.	35
3.3.2.2. PCR amplification	35
3.3.2.3. Agarose gel electrophoresis	36
4. Results	37
4.1. Cultural based method.	37

4.1.1. Intensive Care Unit of New Kasr El Aini Medical	37
School Educational Hospital	
4.1.2. Intensive Care Unit (ICU) of Old Kasr El Aini	49
Hospital	
4.1.3. Intensive Care Unit (ICU) of National Cancer	61
Institute	
4.1.4. Intensive Care Unit (ICU) of Ain Shams University	73
Specialized Hospital	
4.1.5. Cardiac unit and ICU of El-Demerdash University	85
Hospital	
4.2. Non-Cultural based method (PCR)	97
5. Discussion	99
6. Summary	105
7. References	111
8 Arabic Summary	

List of tables

Table 1 . Geographic variations in the recovery of Candida	
species from blood culture	
Table 2. Risk factors associated with oropharyngeal	16
candidiasis	
Table 3. Risk factors associated with development of	17
vaginal candidiasis	
Table 4. Incidence of disseminated Candida infection	21
Table 5. Risk factors predisposing individuals to	22
disseminated candidiasis	
Table 6. Sampling sites, sources and numbers.	32
Table 7. Average counts of Candida spp. isolated from	38
blood samples from ICU patients of New Kasr El Aini	
Hospital	
Table 8. Average counts of Candida spp. isolated from	41
urine samples from ICU patients of New Kasr El Aini	
Hospital	
Table 9. Average counts of Candida spp. isolated from	44
sputum swabs samples from ICU patients of New Kasr El	
Aini Hospital	
Table 10. Average counts of Candida spp. isolated from	47
vaginal swabs samples from ICU patients of New Kasr El	
Aini Hospital	
Table 11. Average counts of Candida spp. isolated from	50
blood samples from ICU patients of Old Kasr El Aini	
Hospital	

Table 12. Average counts of Candida spp. isolated from	53
urine samples from ICU patients of Old Kasr El Aini	
Hospital	
Table 13. Average counts of Candida spp. isolated from	56
sputum swabs samples from ICU patients of Old Kasr El	
Aini Hospital	
Table 14. Average counts of Candida spp. isolated from	59
vaginal swabs samples from ICU patients of Old Kasr El	
Aini Hospital	
Table 15. Average counts of Candida spp. isolated from	62
blood samples from ICU patients of National Cancer	
Institute	
Table 16. Average counts of Candida spp. isolated from	65
urine samples from ICU patients of National Cancer	
Institute	
Table 17. Average counts of Candida spp. isolated from	68
sputum swabs samples from ICU patients of National	
Cancer Institute	
Table 18. Average counts of Candida spp. isolated from	71
vaginal swabs samples from ICU patients of National	
Cancer Institute	
Table 19. Average counts of Candida spp. isolated from	74
blood samples from ICU patients of Ain Shams University	
Specialized Hospital	
Table 20. Average counts of Candida spp. isolated from	77
urine samples from ICU patients of Ain Shams University	
Specialized Hospital	

80
83
86
89
92
95
98

Introduction:

It is apparent that nosocomial fungal infections are becoming more prominent. They are increasingly isolated from immunocompromised patients and patients receiving a broader range of antimicrobial agents. Consequently, infections due to previously obscure fungi are being seen more commonly in hospitalized patients. In addition, standards for susceptibility testing are currently being developed and should help in guiding clinicians and hospital epidemiologists in the management of nosocomial fungal infections. However, continued epidemiological and laboratory research is needed to better characterize these pathogens, allowing for improved diagnostic and therapeutic strategies in the future (Findik and Tuncer, 2002).

The incidence of fungal infections, particularly those caused by *Candida* spp., has considerably increased in hospitalized patients. Usually it affects severely ill and immunocompromised patients. However, there has been an increase of this type of infection in non-neutropenic patients, including surgical patients (Luzzati et al., 2000; Leon et al., 2009), which implies a higher morbidity and mortality, as well as an increase in the use of resources (Olaechea, et al., 2004; Zaoutis et al., 2005).

Candida spp. are part of the normal flora on the skin and on the mucosal membranes of the oral cavity and gastrointestinal tract. Candida spp. can be recovered from sputum in 20% of

١

health care personnel and 55% of hospitalized patients receiving antibiotics (Baum, 1960).

The evolution of fungi of the genus *Candida* from infrequent pathogens to among the most common agents of nosocomial infection has been both dynamic and interesting. The past three decades have witnessed major changes in the incidence of nosocomial infections due to these yeasts. Earlier it was seen that the majority of cases of candidemia and disseminated candidiasis were due to *Candida albicans*. But in the recent years, a distinct increase has been noted in the proportion of cases resulting from infection with non-albicans *Candida* species (Rumpa *et al.*, 2008).

1. Nosocomial Fungal Infections:

Infections acquired during a hospital stay are called nosocomial infections. These infections can be bacterial, viral, and fungal or even parasitic (Kordbacheh *et al.*, 2005).

In the mid-1980s, many institutions, including cancer research, university, and community hospitals, reported that fungi were becoming common pathogens in nosocomial infections (Harvey & Myers, 1987; Anaissie & Bodey, 1989; Bodey, 1988).

In addition, during 1980 to 1990, hospitals reporting data to the Centers for Disease Control and Prevention (CDC) National Nosocomial Infections Surveillance (NNIS) system reported a steady increase in the rate of nosocomial fungal infections, from 2.0 to 3.8 per 1,000 discharges (Beck-Sague *et al.*, 1993; Scott & William, 1996).

It is apparent that nosocomial fungal infections are becoming more prominent. They are increasingly isolated from immunocompromised patients and patients receiving a broader range of antimicrobial agents. Consequently, infections due to previously obscure fungi are being seen more commonly in hospitalized patients (Findik & Tuncer, 2002).

Advances in medicine by use of newer technologies and therapies have helped to treat patients suffering from previously devastating or fatal diseases but these successes have resulted in proliferation of a severely ill immunocompromised, hospitalized patient population. Furthermore, the AIDS epidemic has added to this growing population of immunocompromised individuals (Fridkin & Jarvis, 1996; Bolignano & Criseo, 2003).

These immunocompromised patients are highly susceptible to nosocomial infections caused by organisms such as fungi that were previously considered to be of low virulence or non-pathogenic (Fridkin & Jarvis, 1996).

Fungal infections in these patients are often severe, rapidly progressive, and difficult to diagnose or treat (Edwards, 1991).

Therefore, during the past two decades fungi have become increasingly important causes of nosocomial infections and have emerged as a frequent cause of mortality and morbidity in hospital patients (Walsh & Pizzo, 1988; Fridkin & Jarvis, 1996; Nucci *et al.*, 2001).

Since nosocomial fungal infections (NFI) are often severe, rapidly progressive and difficult to diagnose or treat, there is a critical need for more efforts to be directed toward prevention, early diagnosis and aggressive treatment of these infections (Kordbacheh *et al.*, 2005).

In addition, standards for susceptibility testing are developed and are helpful in guiding clinicians and hospital epidemiologists in the management of nosocomial fungal infections. However, continued epidemiological and laboratory research is needed to better characterize these pathogens, allowing for improved diagnostic and therapeutic strategies in the future (Fridkin & Jarwis, 1996; Moran *et al.*, 2002).

Fungi are increasingly recognized as major pathogens in critically ill patients. *Candida* spp. and Cryptococcus spp. are the yeasts most frequently isolated in clinical practice. The most frequent filamentous fungi (moulds) isolated are <u>Aspergillus spp.</u>, but *Fusarium spp.*, *Scedosporium spp.*, <u>Penicillium spp.</u> and Zygomycetes are increasingly seen (Marr *et al.*, 2002; Husain *et al.*, 2003; Meersseman *et al.*, 2009).

Several reasons have been proposed for the increase in invasive fungal infections, including the use of antineoplastic and immunosuppressive agents, broad-spectrum antibiotics, and prosthetic devices and grafts, and more aggressive surgery. Patients with burns, neutropenia, HIV infection and pancreatitis are also predisposed to fungal infection (Eggimann *et al.*, 2003).

2. Candida:

Candida spp are ubiquitous dimorphic yeasts that can exist as 2- to 5-µm round-oval cells called blastospores, which reproduce