An Overview of Lung Transplantation

Essay
Submitted for the Partial fulfillment of Master
Degree in Chest Diseases

Presented By
Noha Mohamed Ibrahim

M.B., B.Ch. Faculty of Medicine Ain Shams University, 2003

Under Supervision of

Prof. / Mohamed Sherif El Bouhy

Professor of Chest Diseases
Faculty of Medicine
Ain Shams University

Dr./ Khaled Mohamed Wagih

Assistant Professor of Chest Diseases
Faculty of Medicine
Ain Shams University

Faculty of Medicine - Ain Shams University 2011

نظرة شاملة عن زراعة الرئة

رسالة توطئة للحصول على درجة الماجستير في أمراض الصدر

مقدمة من نها محمد إبراهيم بكالوريوس الطب والجراحة كلية الطب - جامعة عين شمس

تحت إشراف أد/ محمد شريف البوهي أستاذ أمراض الصدر كلية الطب - جامعة عين شمس

د/ خالد محمد وجيه أستاذ مساعد أمراض الصدر كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١١

SUMMARY

ung transplantation is emerged as life saving procedure for patients with end stage pulmonary disease. The procedure has evolved over the past 44 years with changes in the surgical techniques and immunosuppressive regimens as the introduction of cyclosporin A in 1980s.

The most common indication for lung transplantation is chronic obstructive pulmonary disease followed by idiopathic pulmonary fibrosis, cystic fibrosis which considered third most common indication and pulmonary arterial hypertension.

Reported cumulative world experience exceeds 13.000 lung transplants with 76.4% 1- year and 42.6% 5- year overall survival. Patients with PAH,idiopathic pulmonary fibrosis, and sacroidosis have higher early mortality rates than those with other diagnoses. Patients with cystic fibrosis have 1-, 5-, and 10 year survival rates of 78%, 52%, and 37% while those recipients with PAH have survival rates of 64%, 44%, and 20%, respectively. As noted, patients with PAH have the highest early hazard of all diagnoses. This can be explained by the complexity of the operation, the requirement for cardiopulmonary bypass,

First of all, I would like to express my deep gratitude to ALLAH for his care and generosity throughout my life.

I would like to express my sincere appreciation to Prof. Mohamed Sherif El Bouhy, Professor of Chest Diseases, Ain Shams University for his keen supervision and guidance and his overwhelming support that has been of great help throughout this work.

I am very thankful to Dr. Khaled Mohamed Wagih, Assistant Professor of Chest Diseases, Ain Shams University for his great support & effort throughout the whole work.

Noha Mohamed

List of Contents

Page No.

Title

•	Introduction	1
•	Aim of the Work	3
•	Anatomy of Respiratory System	4
•	Historical Review	9
•	Workup	9
•	Operative Details4	2
•	Postoperative details	0
•	Postoperative Complications62	2
•	Results of Lung Transplantation	2
•	Discussion	4
•	Outcomes and Future of Lung Transplantation 9	6
•	Summary	7
•	Conclusion	0
•	Recommendations	1
•	References	2
•	Arabic summary	

list of Figures

Fig. No.	Title	Page No.
Fig. (1):	Lung transplantation performed recipients at the Washington School of Medicine (July 1988–1998). Actuarial survival by time	University -November
Fig. (2):	Survival of lung transplantation on 443 recipients at the W University School of Medicine (J November 1998), stratified acc underlying diagnosis leading to t Actuarial survival by time.	Vashington Tuly 1988— Tording to Transplant.
Fig. (3):	Single (n = 78) <i>versus</i> bilateral (n = transplantation performed on 235 with emphysema at the Wuniversity School of Medicine (J. November 1998). Actuarial surviva	recipients Vashington July 1988–
Fig. (4):	Lung Transplantation in the Unit 1988 to 1997.	
Fig. (5):	Actuarial Survival after Transplantation	_

List of Tables

Table No.	Title Page No.	
Table (1):	Basic examination for referral to the transplantation center.	. 32
Table (2):	Special tests (according to specifications of the center) for evaluation before listing	. 32
Table (3):	Commonly used immunosuppressive drugs	. 58
Table (4):	Classification primary graft dysfunction (PGD)	. 64
Table (5):	Classification and histologic features of allograft rejection	. 65
Table (6):	Pathology of Acute rejection	. 67
Table (7):	BOS classification of the ISHLT	. 70
Table (8):	Transplant recipients	. 86
Table (9):	Indication for transplant	. 86
Table (10):	Operations performed	. 87
Table (11):	Organ waiting list	. 88
Table (12):	Airway anastomotic complications	. 88
Table (13):	Prevalence of bronchiolitis obliterans syndrome	. 89
Table (14):	Perioperative deaths after 450 transplants in 443 recipients	. 90
Table (15):	Referral and transplantation rates from four regions	. 93

List of Abbreviations

ABGs	Arterial blood gases
BMI	Body mass index
BOS	Bronchiolitis obliterans syndrome
BPD	Bronchopulmonary dysplasia
C	Centigrade
CBC	Complete blood count
CF	Cystic fibrosis
CMV	Cytomegalovirus
COPD	Chronic obstructive pulmonary disease
CPB	Cardiopulmonary bypass
СРК	Creatinine phosphokinase
CT	Computerized tomography
D	Day
DLCO	Diffusing capacity of lung carbon monoxide
ECG	Electrocardiogram
F	Fahrenheit
FEF	Forced expiratory flow
FEV1	Forced expiratory volume in the first second
FFP	Fresh frozen plasma
FiO_2	Fraction of inspired oxygen
FVC	Forced vital capacity
g	Gram
G5%	Glucose 5%
GER	Gastroesophageal reflux
h	Hour

HBV	Hepatitis B virus
HCV	Hepatitis C virus
HEF	Maximal expiratory flow
HIV	Human imunodefeciency virus
HLA	Human leucocytic antigen
HSV	Herpes simplex virus
ICU	Intensive care unit
IgG	Immunoglobulin G
IIP	Idiopathic interstitial pneumonia
<i>IL-</i> ₂	Interlukin 2
IPAH	Idiopathic pulmonary arterial hypertension
IPF	Idiopathic pulmonary fibrosis
ISHLT	International society for heart and lung transplantation
IV	Intravenous
Kg	Kilogram
LAM	Lymphangioleiomyomatosis
LAS	Lung allocation score
LCH	Pulmonary langerhans cell histiocytosis
LT	Lung transplantation
M^2	Meter square
Mg	Milligram
Min	Minute
ML	Milliliter
mmHg	Millimeers of mercury

ng	Nanogram
NYHD	New York Heart Association
OB	Obliterative bronchiolitis
$PaCo_2$	Pressure of carbon dioxide in arterial blood
PAH	Pulmonary arterial hypertension
PaO_2	Oxygen pressure in arterial blood
PCW	Pulmonary capillary wedge pressure
PGE1	Prostaglandins E1
PLTs	Platelets
PPH	Primary pulmonary hypertension
PRBCs	Packed red blood cells
PSA	Prostate specific antigen
PT	Prothrombin time
PTLD	Posttransplantation lymphoproliferative disorder
QUALY	Quality-adjusted life-year
SLT	Single lung transplantation
UNOS	United Network for Organ Sharing
UW	University of Wisconsin
VIP	Usual interstitial pneumonia
WBCs	White blood cells
Mm	Micro-meter

Introduction

The birth and evolution of thoracic organ transplantation have occurred over the past 60 years. With the development of operative techniques, organ preservation techniques and immuno-suppressive regimens, Lung transplantation is emerged as life saving procedure for patients with end stage pulmonary diseases (*Hosenpud et al.*, 2001).

In 1963 James Hardy at the University of Mississippi performed the first human lung transplantation for 58 years old patient presented with a squamous cell carcinoma at the left hilum. Joel Cooper at the University of Toronto achieved success in 1983 in the transplantation of a single lung. The procedure had evolved over the past 44 years with the changes in the surgical techniques and the immunosuppressive regimens (*Bowdish et al.*, 2004).

The most common indications for lung transplantation is chronic obstructive pulmonary disease followed by idiopathic pulmonary fibrosis also known as usual interstitial fibrosis and cystic fibrosis which considered third most common indication (*Orens et al.*, 2006).

There is Cadaver lung transplantation which involves the surgical replacement of the lungs of a patients with the healthy lungs of a brain dead donor, single or bilateral sequential lung transplantation may be performed dependent upon the recipient's clinical status. Most double lung transplantation are no longer performed enbloc, instead each lung is transplanted separately in the same surgery (*Yung*, 2007).

There is living donor lung transplantation which is the transplantation of either right or left lower lung lobe from one or two healthy donors to replace one or both lungs of patients with end stage lung disease. Living donor lober lung transplantation is relatively a new procedure (*Lynch et al.*, 2006).

Aim of the Work

To review the benefits, risks, possible complications of lung transplantation and future view of lung transplantation from data collected from different centers.

Anatomy of Respiratory System

Humans breathe to live, and this action is dependent on air getting into the small air sacs that make up the lungs, the main organ of respiratory system. The lungs are located within the chest cavity behind the ribs and make up the primary organ in the respiratory system, comprising the majority of the lower respiratory system (*Shier et al.*, 2002).

The respiratory system is divided into two parts that work together during respiration.

1- Upper respiratory tract

The nose is made up of bone, cartilage, and muscle. The nasal cavity is lined with a mucous membrane that contains hair-like structures called cilia. The pharynx is located behind the tongue and serves as a passageway for air from the nasal cavity and food from the oral cavity (*Shier et al.*, 2002).

2- Lower respiratory tract

Trachea

The trachea extends from the larynx, which fixes it through the hyoid bone to the skull, down to its bifurcation in the mediastinum at the level of the fifth thoracic vertebra. At its lower end the trachea divides into the right and left main bronchi. The ridge between the bronchi seen through the bronchoscope is the carina. The trachea, main bronchi and lower lobe bronchi are outside the lung substance. All other bronchi are situated within the lung, and as they enter it they take with them an invagination of the visceral pleura, forming a peribronchial sheath separated from the bronchi by a potential space (*Proctor et al.*, 1977).

The lower airways are known as bronchi down to the smallest divisions containing cartilage. Thereafter they become bronchioles, the final branch of this type being the terminal bronchiole. Subsequent divisions contain increasing numbers of alveoli in their walls and are called respiratory bronchioles; these give off the alveolar ducts and the air sacs and alveoli. The ultimate lung unit from each terminal bronchiole is called the acinus (*Horsfield et al.*, 1981).

Human lung anatomy

The lungs consist of two sets of lobes: three lobes make up the right lung and two lobes make up the left lung. The left lung is smaller is order to accommodate the heart, which is situated under the left lung and behind the rib