Clinical Significance of Plasma Levels of Pentraxin-3 in Pre-eclampsia Patients

Thesis
Submitted for Partial Fulfillment of M.Sc. Degree in Clinical and Chemical Pathology

By

Marwa Adham El-Mohamady Hasb El-Nabi

M.B., B.Ch. Ain Shams University

Supervised by

Professor/ Manal Mohammed Abd Al Aziz

Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Doctor/Eman Saleh El-Hadidi

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Doctor/Nermine Helmy Mahmoud

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2011

الأهمية الإكلينيكية لنسبة البنتراكسين ٣ في البلازما لدى الحوامل المصابات بتسمم الحمل

رسالة

توطئة للحصول على درجة الماجستير في الباثولوجيا الإكلينيكية والكيميائية

مقدم من

الطبيبة/ مروة أدهم المحمدى حسب النبى بكالوريوس الطب والجراحة كلية الطب – جامعة عين شمس

تحت إشراف

الأستاذ الدكتور/ منال محمد عبد العزيز

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

الدكتور/ إيمان صالح الحديدي

أستاذ مساعد الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

الدكتور/ نرمين حلمي محمود

أستاذ مساعد الباثولوجيا الإكلينيكية والكيميائية كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس

SUMMARY AND CONCLUSION

Pre-eclampsia is a potentially serious condition that still accounts for significant morbidity and mortality for the mother and the neonate, complicating 5-7% of all pregnancies and exposing them to a 3- to 25-fold increased risk of severe obstetric complications. Although, the pathogenesis is not fully understood, it is now widely accepted that vascular endothelial dysfunction is the most astonishing and the principal event in the pathophysiology of the disease.

Researchers investigated the fact that endothelial dysfunction has been hypothesized to be part of an excessive maternal inflammatory response to pregnancy. Complement activation, activated circulating leukocytes, increased release of reactive oxygen species, and increased levels of various inflammatory cytokines in pre-eclampsia.

Pentraxin-3 (PTX-3) is a described inflammatory molecule that belongs to the well known CRP family. PTX-3 differs from CRP in terms of cellular origin, molecular inducers, and kinetics of production. It is expressed by different cells like endothelial cells, monocytes, macrophages, and fibroblasts exposed to inflammatory stimuli. PTX-3 plasma levels increase dramatically during endotoxic shock, sepsis, or other inflammatory conditions. Recent studies suggest that PTX-3 plays an important role in innate immunity, female fertility, and inflammatory processes, so this promoted us to investigate this molecule in pre-eclampsia.

In this regard, this study aimed to evaluate the clinical utility of pentraxin-3 in diagnosis of pre-eclampsia and assessment of severity of the disease in comparison to CRP. In addition, the role of PTX-3 and CRP in fetal growth was evaluated.

List of Abbreviations

ACE Angiotensin-converting enzyme

ACOG American College of Obstetrics and Gynecology

AM Adrenomedullin

AMI Acute myocardial infarction
AT1 Angiotensin II receptor-1
CBC Complete blood picture
CKD Chronic Kidney Disease

COC Cumulus oophorus cells in ovary

CTBs Cytotrophoblasts

DBP Diastolic blood pressure

DCs Dendritic cells

ELISA Enzyme linked immunosorbent assay

eNOS Endothelial nitric oxide synthase

ET-1 Endothelin-1

Flt-1 Fms-like tyrosine kinase-1

GA Gestational age

HELLP Hemolysis, elevated liver enzymes and low plateles

IFN-γ Interferon-gamma

IGF Insulin-like growth factor Pentraxin-3 (PTX3)

IL-1 Interleukin-1IL-10 Interleukin-10IL-2 Interleukin-2

IUGR Intrauterine growth restriction

KDa Kilo Dalton

LPS Lipopolysaccharide

MDL Minimum detectable limit

MMPs Matrix metalloproteinases

List of Abbreviations

NK Natural killer cells

NO Nitric oxide

NOS Nitric oxide synthase
NPTXI Neural pentraxin I
NPTXII Neural pentraxin II

NSCLC Non-small cell lung cancer
OMPs Outer membrane proteins

PAI-1 Plasminogen activator inhibitor-1

PAPP-A Pregnancy associated plasma protein A

PCR Polymerase chain reaction

PDGF Platelet derived growth factor

PTX-3 pentraxin-3

PIGF Placental growth factor
PMNs Polymorphonuclear
PP-13 Placental protein-13

RAS Rennin angiotensin system
ROS Reactive oxygen species
RT-PCR Reverse transcriptase PCR
SAP Serum amyloid P-component

SBP Systolic blood pressure
SCLC Small cell lung cancer

sEng Soluble endoglin

sFlt1 Fms-like tyrosine kinase-1

SSC Systemic sclerosis

TGF-β1 Transforming growth factor-β1

TLR Toll-like receptor

TNF-α Tumor necrosis factor -alpha

VEGF Vascular endothelial growth factor

List of Tables

No.		Page
1	Risk Factors of Pre-eclampsia	9
2	The potential laboratory markers for prediction of pre- eclampsia	34
3	The diagnostic criteria of mild and severe pre-eclampsia	36
4	Criteria for Laboratory Diagnosis of HELLP Syndrome	38
5	Laboratory Differential Diagnosis in Pregnancy Associated Thrombotic Microangiopathies	39
6	Descriptive and comparative Statistics of the Studied Parameters in the Control (Group II) and in Pre-eclampsia Patients (Group I) (student's t test for Parametric Data, Wilcoxon's Rank Sum Test for Skewed Data• & X2 Test for Qualitative Data)	75
7	Descriptive and comparative Statistics of the Studied Parameters in Pre-eclampsia Patients (Subgroup Ia, Subgroup Ib) (student's t test for Parametric Data, Wilcoxon's Rank Sum Test for Skewed Data• & X2 Test for Qualitative Data)	76
8	Descriptive and comparative Statistics of the Studied Parameters in Control Group (Subgroup IIa, Subgroup IIb) (student's t test for Parametric Data, Wilcoxon's Rank Sum Test for Skewed Data• & X2 Test for Qualitative Data)	77

List of Tables

No.		Page
9	Statistical Comparison between the Various Studied Parameters in Pre-eclampsia Patients at Various degrees of the Disease as Compared to healthy pregnant Control Group (student's t test for Parametric Data, Wilcoxon's Rank Sum Test for Skewed Data• & X2 Test for Qualitative Data)	78
10	Correlation Study between PTX-3 and the Other Studied Parameters in Pre-eclampsia Patients Using Ranked Spearman Correlation Test (rs)	79
11	Diagnostic Performance of Plasma PTX-3 & CRP in Pre- eclampsia Patients versus Healthy Pregnant Group	79
12	Diagnostic validity of the combined use of Plasma PTX- 3& CRP in Pre-eclampsia Patients versus Healthy Pregnant Group	79
13	Diagnostic Performance of Plasma PTX-3, CRP & mTP in Severe Pre-eclampsia versus Mild Pre-eclampsia	80
14	Diagnostic validity of the combined use of Plasma PTX-3, CRP & mTP in Severe Pre-eclampsia versus Mild Pre-eclampsia	80

List of Figures

No.		Page
1	Pathophysiological events in pre-eclampsia	10
2	Factor V Leiden	13
3	The interconnection among different theories of pre- eclampsia	20
4	Hypertensive disorders in pregnancy	22
5	Mechanism of Plasminogen activator inhibitor-1 (PAI-1)	27
6	Structural organization of short and long pentraxins	42
7	Steps of PCR	54
8	ROC curve analysis showing the diagnostic performance of Pentraxin-3 for discriminating patients with preeclampsia from healthy pregnant	81
9	ROC curve analysis showing the diagnostic performance of Pentraxin-3 for discriminating patients with severe pre-eclampsia from those with mild pre-eclampsia	82
10	ROC curve analysis showing the diagnostic performance of mTP for discriminating patients with mild preeclampsia from those with severe pre-eclampsia	83
11	Comparison between all studied groups as regard median values of PTX3	84

List of Contents

	Page
• LIST OF ABBREVIATIONS	i
• LIST OF TABLES	iii
• LIST OF FIGURES	iv
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	4
I- PRE-ECLAMPSIA	
A) Definition	4
B) Epidemiology	4
C) Risk Factors	5
D) Pathophysiology of Pre-eclampsia	9
E) Causes of Pre-eclampsia:	10
1. Genetic Hypothesis of Pre-eclampsia	11
2. Abnormal Placentation Theory	15
3. Immunological Theory	16
4. Oxidative Stress Hypothesis	19
F) Diagnosis of Pre-eclampsia:	21
1. Clinical Presentation	21
2. Physical Examination	21
3. Radiological Investigations	23
4. Laboratory Diagnosis	23
a- General laboratory investigations	23
i- Proteins in urine	23
ii- Liver function tests	24
iii- Renal function tests	24
iv- Complete blood picture	25
b. Laboratory markers for prediction of pre-eclampsia	25
i - Urinary kllikrein excretion	26
ii- Coagulation disorder markers	26
iii- Urinary Calcium	27
iv- Oxidative stress markers	28
v- Homocysteine	28
vi- Adrenomedullin	28
vii- Activin A and inhibin A	29
viii- Leptin	29
ix- Maternal serum foetal erythroblast and cell-free foetal DNA	30
x- Placental protein-13	30

List of Contents

	xi- Pregnancy associated plasma protein A	30
	xii- Vascular endothelial growth factor	31
	xiii- Placental growth factor	32
	xiv- Soluble Flt-1	32
	xv- Soluble endoglin	33
	xvi- PTX-3	34
	G) Classification of Pre-eclampsia	35
	H) Severity of Pre-eclampsia	35
	I) Complications of Pre-eclampsia	37
	J) Differential Diagnosis of Pre-eclampsia	38
	K) Prevention of Pre-eclampsia	39
11-	Pentraxin-3	
	A) Introduction	41
	B) Chemical Structure	41
	C) Gene Regulation	43
	D) Mechanism of Action	43
	E) Biologcal Functions of Pentraxin-3	44
	1. Role of PTX-3 in apoptosis	44
	2. Role of PTX-3 in innate immunity	45
	3. Role of PTX-3 in fertility	46
	4. Role of PTX-3 in Pregnancy	46
	F) Clinical Utility of Pentraxin-3	46
	1. Pentraxin-3 in Atherosclerosis Cardiovascular Disordes	46
	2. Pentraxin-3 in Chronic Kidney Disease (CKD	47
	3. Pentraxin-3 in Autoimmune Disorders	47
	4. Pentraxin-3 in Lung Cancer	48
	5. Pentraxin-3 in Inflammation and Infection	49
	6. Pentraxin-3 in Pre-eclampsia	49
	7. Pentraxin-3 in Intrauterine Growth Restriction	50
	G) Assay of Pentraxin-3	51
	1- Enzyme-linked immunosorbent assay	51
	2- Western blot analysis	52
	3- Semi-quantitative reverse transcriptase polymerase chain	53
	reaction	

List of Contents

SUBJECTS AND METHODS	55
• RESULTS	71
• DISCUSSION	85
SUMMARY AND CONCLUSION	90
• RECOMMENDATIONS	93
• REFERENCES	94
ARABIC SUMMARY	

First of all, all gratitude is due to **allah** for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Manal Mohammed Abd Al Aziz** Professor of Clinical and Chemical Pathology, faculty of medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and great effort he has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I am also grateful to **Dr. Eman Saleh El-Hadidi** ass. professor of Clinical and Chemical Pathology, faculty of medicine, Ain Shams University for her guidance, continuous assistance and sincere supervision of this work.

I would like also to express my sincere appreciation and gratitude to **Dr. Nermine Helmy Mahmoud**, ass. professor of Clinical and Chemical Pathology, faculty of medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

INTRODUCTION

Pre-eclampsia is a multisystem disorder specific to pregnant women. It remains one of the most important causes of maternal and fetal mortality and morbidity worldwide. It is the second largest cause of maternal mortality and affects 5% to 7% of pregnant women worldwide and approximately 3% of pregnant women in the western world (*Aida et al., 2009*). Pre-eclampsia is a major cause of preterm birth and intrauterine growth restriction accounting for 12-18% of pregnancy-related maternal deaths especially in developing countries (*Sharon et al., 2008*).

In spite of its relevant epidemiologic impact, the complete pathogenesis of this disease still remains unclear, underlining a multifactorial etiology. Deficient remodeling of the spiral arteries during the interaction between maternal and fetal sides at the time of trophoblast invasion has been postulated as a cause of placental insufficiency. This would lead to the release of inflammatory factors in the systemic maternal circulation (*Cetin et al., 2006*). Endothelial dysfunction has been hypothesized to be part of an excessive maternal inflammatory response to pregnancy. Complement activation, activated circulating leukocytes, increased release of reactive oxygen species, and increased levels of various inflammatory cytokines in pre-eclampsia all agree with this hypothesis (*Redman and Sargent, 2005*).

Several laboratory markers were found for detecting haemostatic system alterations in pregnancies complicated by pre-eclampsia. Among these are fibronectin which is related to blood pressure in pregnancy, in addition to serum amyloid A (SAA) and C-reactive protein (CRP) which are markers of tissue damage and inflammation (Engin et al., 2007).

Although these markers are altered in pre-eclampsia, they have a major disadvantage as they lack both specificity and sensitivity (Baumann et al., 2010).

Pentraxin-3 (PTX-3) is a described inflammatory molecule that belongs to the well known CRP family. PTX-3 differs from CRP in terms of cellular origin, molecular inducers, and kinetics of production. It is expressed by different cells like endothelial cells, monocytes, macrophages, and fibroblasts exposed to inflammatory stimuli (Garlanda et al., 2007). PTX-3 plasma levels increase dramatically during endotoxic shock, sepsis, or other inflammatory conditions. Recent studies suggest that PTX-3 plays an important role in innate immunity, female fertility, and inflammatory processes, so this promoted us to investigate this molecule in pre-eclampsia (Souza et al., 2002).

AIM OF THE WORK

The aim of the present study is to assess the clinical utility of PTX3 as an early predictor of pre-eclampsia and assessment of its severity in comparison to CRP. In addition, the relation of PTX3 to fetal growth will be evaluated.