

An updates of prediction of prognosis among the critically ill patients

An Essay

Submitted for partial fulfillment of Master Degree In Intensive Care Medicine

PRESENTED BY

Mostafa Shaaban Abd Elhamed Ahmed

M.B., B.Ch.

SUPERVISED BY

Prof.Dr / Amir Ibrahim Salah

Professor of Anesthesia and Intensive Care Faculty of Medicine Ain Shams University

Dr / Safaa Ishak Ghaly

Assistant Professor of Anesthesia and Intensive Care

> Faculty of Medicine Ain Shams University

Dr / Rania Magdi Mohamed

Lecturer of Anesthesia and Intensive Care Faculty of Medicine Ain Shams University

2011

Summary

For many critically ill patients, intensive care is undoubtedly life- saving and resumption of a normal lifestyle is to be expected. In the most seriously ill patients, however, immediate mortality rates are high; a significant number die soon after discharge from the intensive care unit, and the quality of life for some of those who do survive may be poor. Moreover, intensive care is expensive, particularly for those with the worst prognosis, and resources are limited.

Both for a human approach to the management of critically ill patients and to ensure that limited resources are used appropriately, it is necessary to

Acknowledgment

First of all, I wish to express my sincere thanks to **ALLAH** for his care and generosity throughout my life.

I would like to express my sincere appreciation and my deep gratitude to **Prof. Dr. Amir Ibrahim Salah**, Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for his faithful supervision and guidance and his overwhelming kindness that has been of great help throughout this work.

I am also deeply indebted to **Dr. Safaa Ishak Ghaly**,
Assistant Professor of Anesthesia and Intensive Care, Faculty of
Medicine, Ain Shams University for her great support and guidance
throughout the whole work.

I would like to express my great thanks to **Dr.Rania**Magdy Mohamed, Lecturer of Anesthesia and Intensive
Care, Faculty of Medicine, Ain Shams University for the
tremendous effort she has done in the meticulous revision of this
work. Her continuous encouragement was of great value and
support to me.

Mostafa Shaaban Abd Elhamed

List of contents

Title	Page No
Introduction	2
Chapter I: Criteria of Patient Admission to	ICU 7
 Admission criteria 	
 Admission Models 	
 Discharge Criteria 	
 Readmission after discharge 	
• Triage	
Chapter II: ICU Scoring System	27
 Classification of scoring systems 	
 Types of scoring system 	
 Assessment of scoring system 	
• Commonly used scoring system	
Chapter III: Uses and Abuses of Scoring Sy	stems90
Summary	100
References	105
Arabic summary	125

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Diagnosis Model	15
Table (2):	Objective Parameters Model	19
Table (3):	Discharge criteria	22
Table (4):	Types of scoring system	31
Table (5):	Discrimination levels based on the AUC	37
	Acute Physiology and chronic health APACHE II)	40
Table (7):	SAPS II Physiological parameters	48
	Mortality prediction models-0(MPM0 II)	52
	Mortality prediction models-24(MPM II-	53
Table (10)	The multiple organ dysfunction score	
Table (11): Sequential organ failure Assessment	
(SOFA) sco	re	59
Table (12)	: Neurologic Score	62
Table (13)	: Cardiovascular Score	62
Table (14)	Renal Score	6
Table (15)	: Pulmonary System	64
Table (16)	: Hematologic Score	64
Table (17):	Henatic score	65

Table (18): Three days Recalibrated ICU Outcome Score (TRIOS)	67
Table (19): The Child-Pugh Score	68
Table(20):Classification of Trauma Scoring Systems	75
Table (21): Trauma score for adults	77
Table (22): Trauma score for children	78
Table (23): Revised trauma score for adults 80	
Table (24): The Glasgow Coma Scale for adult	81
Table (25): The Abbreviated Injury Scale (AIS)	83
Table (26): Injury severity score (ISS)	85
Table (27): Trauma Index Score	86
Table(28): Circulation, Respiration, Abdomen/ thorax, Motor and Speech score	88

LIST OF ABBREVIATIONS

Meaning
Acquired immunodeficiency syndrome
Abbreviated injury score
Life threatening Events Recognition and Treatment
Acute physiology and chronic health evaluation
Acute Physiology Score
Area under the receiver operating characteristic curve
Blood pressure
Blood urea nitrogen
Chronic health evaluation
Central nervous system
Continues positive airway pressure
Circulation, Respiration, Abdomen/ thorax, Motor and Speech score
European-North American Study
Fraction of inspired oxygen
Glasgow Coma Scale
Heart rate
Intensive care unit
International normalized ratio
Injury severity score
Logistic Organ Dysfunction
Mean arterial pressure
Model for end-stage liver disease
Multiple Organs Dysfunction Score
Mortality Prediction Mode
Mechanical ventilation

NIH National Institutes of Health

ODIN Organ Dysfunction and Infection System

OSF Organ System Failure

PAR Pressure-adjusted heart rate

PEEP Positive end-expiratory pressure

RAND Corporation of Research and Development

RAP Right atrial (central venous) pressure

ROC Receiver operating characteristic curve

RR Respiratory rate

RTS Revised trauma score

SAPS Simplified acute physiology score

SBP Systolic blood pressure

SOFA Sequential Organ Failure Assessment

TIPS Transjugular portosystemic intrahepatic shunt

TIS Trauma Index Score

TISS Therapeutic intervention scoring system

TRIOS Three-Day Recalibrating ICU Out- comes

TRISS Trauma Injury Severity Score

TS Trauma scores

WBC White blood count

التنبؤ بالحالة المرضية ومردودها بين المرضي ذوي الحالات الحرجة

رسالة مقدمة من الطبيب مصطفى شعبان عبد الحميد احمد بكالوريوس الطب والجراحة

توطئة للحصول على درجة الماجستير في طب الرعاية المركزة

تحت إشراف الدكتور/أمير إبراهيم صلاح أستاذ التخدير والرعاية المركزة - طب عين شمس

الدكتورة/صفاء إسحاق غالي أستاذ مساعد بقسم التخدير والرعاية المركزة - طب عين شمس

الدكتورة / رانيا مجدي محمد مدرس بقسم التخدير والرعاية المركزة - طب عين شمس

Introduction

Introduction

Quality of care is an important issue in the health care debate. There is an ever-increasing recognition of the wide variation in quality of care and its effect on outcome. Therefore, indicators to measure quality of care are increasingly being used and focus either on the outcome, the process or the structure of care. Until recently, Intensive Care Units (ICU) have focused mainly on outcome. Only recently process and structure indicators have been added to the registry. Such as the availability of numbers of critical care beds per 10,000 populations, patient-to-nurse ratio, the length of ICU stay and compliance with care bundles. Prediction models have been developed to perform case-mix adjustments on mortality rates, thereby enabling comparison of outcome between individual ICUs (Keizer et al., 2002).

The process of diagnosis and treatment of patients admitted to the ICUs is guidelines based. Using these scoring systems for the mortality prediction along with the guideline-based medicine, help to compare ICUs' performances using the available facilities, evaluating the result of new interventions, technologies and protocols; and determination of cost-effectiveness in any process; To reach this goal, it is important to choose a suitable index for measuring the probability of mortality and severity of illness for critically ill patients (*Pronovost and Angus*, 2001).

The newer ICU prediction models, e.g. Acute Physiology and Chronic Health Evaluation (APACHE), Simplified Acute Physiology Score and Mortality Probability Model, have the potential to help decision makers, physicians, and patients to select treatment options and allocate resources despite their limitations, they have been used as benchmarks to evaluate ICU performance, and they highlight the structure and

process of care characteristics associated with the various levels in quality of care (DePorter, 1997).

The evaluation of severity of illness in the critically ill patient is made through the use of severity scores and prognostic models. Severity scores are instruments that aim at stratifying patients based on the severity of illness, assigning to each patient an increasing score as their severity of illness increases. Prognostic models, apart from their ability to stratify patients according to their severity, predict a certain outcome (usually the vital status at hospital discharge) based on a given set of prognostic variables and a certain modeling equation (Moreno et al., 2005).

Most critical care severity scores are calculated from the data obtained on the first day of ICU admission [e.g. the APACHE, the SAPS, and the mortality prediction model (MPM)]. Other scoring systems are repetitive and collect data sequentially throughout the duration of ICU stay or over the first

few days. Examples of repetitive systems are the SOFA and Multiple Organ Dysfunction Score (MODS). Both first day and sequential scoring systems can be further divided into subjective and objective scores. Subjective scores are produced by taking variables that have been agreed by a panel of experts, and then applying a numerical weighting to each variable to produce a subjective score (*Le Gall*, 2005).

Finally, all the scoring systems assess the severity of illness and the likelihood of in-hospital mortality. Of arguably more importance is the ability to predict outcome or morbidity after discharge from ICU (Ridley, 1998).