

الطرق الحديثه في عمليات إعادة تشكيل الثدي كعلاج لتر هلات الثدي بعد جراحات علاج البدانة و إنقاص الوزن

رساله تمهيديه مقدمه من الطبيبه ريه المساله الدسوقي إبراهيم محمد بكالوريوس الطب و الجراحه توطئه للحصول على درجة الماجستير في الجراحة العامة

تحت إشراف

أ.د/ أسامه فؤاد محمد أستاذ الجراحه العامه كلية الطب جامعة عين شمس

أم.د/ محمد بهاء أستاذ مساعد الجراحه العامه كلية الطب جامعة عين شمس

د/ شيرين متولي سلامه مدرس جراحة تجميل الوجه و الفكين و علاج الحروق كلية الطب جامعة عين شمس

THE NEW TECHNIQUES OF BREAST RESHAPING IN THE MANAGEMENT OF BREAST PTOSIS POST BARIATRIC SURGERY AND MASSIVE WEIGHT LOSS

Essay

Submitted for partial fulfillment of the master degree in general surgery

By

Riham El-Desouki Ibrahim Mohammed (M.B., B.Ch)

Supervised by

Prof. Dr. Osama Fouad Mohamed

Professor of general surgery Faculty of medicine Ain Shams university

Ass. Prof. Dr. Mohammed Bahaa

Assistant professor of general surgery
Faculty of medicine
Ain Shams university

Dr. Sherine Metwaly Salama

Lecturer of Plasticsurgery Faculty of medicine Ain Shams university

2010

First and foremost, I feel always indebted to *Allah*, the most kind and most merciful.

I am deeply grateful to *Prof. Dr. Osama Fouad Mohamed*, Professor of general surgery, faculty of medicine, Ain Shams University, for suggesting and planning the work and for continuous help and valuable advice and support.

I would like also to thank *Prof. Dr. Mohammed Bahaa*, Assistant professor of general surgery, faculty of medicine, Ain Shams University, for his cooperation and advice whenever needed and for his kind help and guidance.

I also like to express my deep gratitude to Dr. Sherine Metwaly Lecturer of plastic and reconstructive surgery, Facualty of medicine, Ain Shams University, Who was patient and considerate, saving no time and effort helping me with this work.

I would like also to express my best regards and thanks to my family specially my mother who supported and helped me during working on this research.

CONTENTS

Subject	Page
LIST OF ABBREVIATIONS	i
LIST OF TABLES	iii
LIST OF FIGURES	v
INTRODUCTION	1
AIM OF THE WORK	. 5
OBESITY	7
TYPES OF BARIATRIC SURGICAL PROCEDURES	21
PATHOPHYSIOLOGY	39
ANATOMY OF THE BREAST	49
ALGORITHMIC APPROACH	58
SUMMARY	96
REFERENCES	99
ARABIC SUMMARY	116

LIST OF ABBREVIATIONS

BMI : Body Mass Index

BS : Bariatric surgery

IMF : Infra mammary fold

ICAP : Inter Costal Artery Perforator

LAGB : Laparoscopic Adjustable Gastric Band

LICAP : Lateral Inter Costal Artery Perforator

MWL : Massive weight loss

NAC : Nipple areola complex

NHLBI : The National Heart, Lung, and Blood Insti-

tute

NIDDKD : National Institute for Diabetes & Digestive

and Kidney Diseases

RYGBP : Roux-en-Y Gastric bypass

SFS : Superficial Fascial System

VBG : Vertical Banded Gastroplasty

WHR : Waist Hip Ratio

Tables		Page
1	Classification of overweight and obesity by BMI, waist circumference, and associated disease risks	9
2	Complications of Obesity	13
3	Regnault classification	48

LIST OF FIGURES

Figure		Page
1	(A) jejunoileal bypass; (B) biliopancreatic diversion; (C) biliopancreatic diversion with duodenal switch (Mathus 2008).	24
2	Illustration of the vertical banded gastroplasty. (Huang and Farraye 2005)	26
3	Illustration of the laparoscopic adjustable silicone gastric banding procedure. (Huang and Farraye 2005)	27
4	Sleeve gastrectomy (Abeles and Shikora 2008)	28
5	Illustration of biliopancreatic diversion. (Abeles and Shikora 2008).	30
6	Illustration of the biliopancreatic diversion with duodenal switch (Abeles and Shikora 2008)	32
7	Roux-en-Y gastric bypass. (Abeles and Shikora 2008)	34
8	Endoscopically placed electrical gastric stimulation (Schauer et al., 2007)	36
9	Photograph shows a BIB infllated with saline (Ganesh et al., 2007).	38
10	Anatomic zones of adherence of superficial fascial system (Loren and Worren, 2006)	42

List of figures

Figure		Page
11	Breast ptosis classification (Regnault, 1976).	47
12	Breast profile (Ramsay et al., 2004).	51
13	Blood supply to breast (Atlas of Breast Surgery, 2006)	54
14	Surface anatomy of the breast (Atlas of Breast Surgery, 2006).	56
15	Algorithmic approach to mastopexy after MWL. (Colwell S. et al., 2009).	65
16	Vertical mastopexy and augmentation. (Grabb & Smith's plastic surgery 2006).	68
17	Preoperative markings of Wise-pattern mastopexy with lateral extension of the intercostal artery perforator (ICAP) flap. (Kwei et al., 2006).	72
18	Wise pattern (Rubin, 2006).	74
19	Central dermal extension suspended to chest wall (Aly, 2006).	75
20	The medial and lateral breast flaps are elevated. The medial and lateral breast flaps are folded central dermal pedicle is lifted superiorly to simulate the position in which they will be tooked to the cheet well.	
	position in which they will be tacked to the chest wall (Aly, 2006).	76
21	Approximating the dermis of the lateral flap to the central dermal extension (Rubin, 2006).	77
22	The dermal edge of the medial breast flap is fixed to chest wall (Rubin, 2006).	78
23	The dermis along the lateral breast is secured to the	79

List of figures

Figure		Page
	lateral chest fascia (Rubin, 2006).	
24	The breast skin flaps is redrapped.	79
25	Autologous augmentation with lateral thoracic flap (Colwell et, al 2009).	83
26	Techniques of Dermal suspension mastopexy. (Colwell et, al 2009)	85
27	Pre and post operative figures of Dermal suspension mastopexy. (Colwell et, al 2008).	86
28	Rotation advancement vertical mastopexy. (Colwell et, al 2009)	88
29	The inferior pedicle flap based at the fifth to sixth interspaces.	90
30	The muscle loop after the flap has been passed under it.	90
31	Bipedicled prepectoral fascia flap. (Ritz et, al 2006).	92
32	Vertical mastopexy with superomedial medical and inferior chest wall flap. (Colwell et al., 2009).	94

INTRODUCTION

Obesity is a growing problem worldwide, with a mean prevalence of approximately 20 to 30% in adults in Europe and the USA, while morbid obesity rates range from 4.7% to 6% in the adult population (Sweeting 2007). Although dietary and lifestyle modifications have traditionally been the mainstay of treatment for obesity, their lack of success at long term weight reduction and the paucity of effective pharmacologic agents led to a comprehensive evaluation of surgical management. Guidelines established recommend bariatric operation for morbidly obese patients, defined as those with a body mass index (BMI) = 40 or patients with a BMI = 35 who have associated comorbidities. (Borud and Warren, 2007)

Bariatric surgery (also called "weight loss surgery") is the use of surgical interventions in the treatment of obesity. It's dated back to 1954 when Kremen and colleagues published a case report of jejunoileostomy for weight loss (**Kremen**, *et al.*, 1954). With the development of bariatricSurgery, Surgical treatment of morbid obesity increased in popularity, In recent years, the

number of bariatric procedures performed has markedly increased

Weight loss surgery relies on various principles; the most common approaches are reducing the volume of the stomach, producing an earlier sense of satiety (e.g. by adjustable gastric banding and vertical banded gastroplasty) and reduce the length of bowel that food will be in contact with, directly reducing absorption (gastric bypass surgery). All procedures can be performed laparoscopically (Encinosa et al., 2006).

Although bariatric surgery markedly decreases the excess weight and many of its comorbidities, it aggravates the excess skin due to the large volume loss seen in the post bariatric patient. Therefore, increasing numbers of patients are turning to plastic surgery to complete their metamorphosis and to help them regain a sense of normality.

Massive weight loss (MWL) can lead to considerable breast deformities, which can be a source of particular distress to patients. Deformities commonly seen include excess sagging skin, ptosis, loss or deficiency of breast volume secondary to atrophy, deflated and flattened glands. (Borud and Warren, 2007)

Breast ptosis was originally staged by Regnault. Minor ptosis (first degree) occurs when the nipple is at the level of the inframammary fold (IMF). Moderate ptosis (second degree) is when the nipple is below the IMF but above the lowest breast contour. Severe ptosis (third degree) is when the nipple is at the lowest breast contour and below the level of the IMF (**Regnault**, **1976**). Mastopexy is a procedure designed to elevate breast tissue and the nipple–areola complex to correct breast ptosis.

Treatment algorithm:

The unique characteristics of the MWL breast have inspired specific technical modifications of standard mastopexy procedures to improve esthetic shape and outcome in these patients. A treatment algorithm based on breast volume was fashioned to help identify the appropriate technique needed to achieve the desired aesthetic outcome. (Colwell *et al.*, 2009).

This essay focuses on ways to improve shape, projection, and long-term results, using autologous tissue alone or combined with breast implants. Although the existing implants cannot be considered satisfactory for these patients because of early recurrence of ptosis after application of the heavy implants pulling down the loose redundant breast tissues, for these

reasons, nowadays, the final choice should be reshaping without implants (Franco, et al., 2010)

Autologous breast reshaping depends on increasing volume of the breast by utilizing excess axillary tissue (lateral thoracic/spiral/intercostal artery perforator flap), as well as modification of existing superomedial pedicle techniques to maximize breast volume, and increasing breast parenchymal support with suture fixation and dermal suspension. (Amy and Borud, 2009).

Alteration in body habitus following massive weight loss presents the plastic surgeon with a number of distinct anatomical sites requiring aesthetic consideration. In order to achieve an optimal result, patients undergoing bodycontouring surgery to the breast usually require additional surgical procedures to address skin and subcutaneous tissue excess in the lateral chest wall and upper arms to avoid aesthetic disharmony. (Daniel and Le Roux 2010).

Transposition of lateral intercostal artery flap reduces this lateral chest wall excess, and extension of the vertical donor site scar across the axilla can easily incorporate the brachioplasty excision. Performance of these procedures concurrently in patients who typically require multiple operations helps to further

Introduction

reduce the impact of surgical treatment, thus increasing patient satisfaction. (Hamdi et al., 2006).

Augmentation using redundant autologous tissue from the lateral chest wall that would otherwise be discarded as a result of body-contouring surgery. This reduces the requirement for implants, which may be difficult to cover with a ptotic inelastic skin envelope, and removes the risks of complications and multiple procedures specific to implant augmentation. (**Kwei** *et al.*, 2006).

In addition, patients prefer the improved contour of the lateral chest wall and less obvious vertical donor site scar compared with transverse scars extending onto the back enabling them to wear clothing that exposes their back with confidence. These factors reduce donor site morbidity, which is particularly important with respect to "aesthetic" surgical procedures. (Daniel and Le Roux 2010)