MANAGEMENT OF DISTAL OCCLUSIVE DISEASE BY INFRAPOPLITEAL ANGIOPLASTY

Essay

Submitted For Partial Fulfilment of Master Degree In General Surgery

Presented By

Armia Nader Faragalla

M.B.B.Ch., Faculty of Medicine

Sohag University

Supervised By

Prof. MAHMOUD SOBHY KHATTAB

Professor of General & Vascular Surgery

Faculty of Medicine

Ain Shams University

Dr. ATEF ABDEI HAMEED DESOUKEY

Lecturer of General & Vascular Surgery

Faculty of Medicine

Ain Shams University

Faculty of Medicine

Ain Shams University

2011

دراسة أحدث طرق تشخيص وعلاج انسداد الشرايين الطرفية تحت الركبة بواسطة القسطرة التداخلية

رسالة مهدمة من

الطبيب/أرميا نادر فرج الله

بكالوريوس الطب والجراحة جامعة سوهاج

توطئة للحصول على درجة الماجستير في الجراحة العامة

تحت إشراف

الأستاذ الدكتور

محمود صبحى خطاب

أستاذ الجراحة العامة وجراحة الأوعية الدموية كلية الطب جامعة عين شمس

الدكتور

عاطف عبد الحميد دسوقى

مدرس الجراحة العامة وجراحة الأوعية الدموية

كلية الطب جامعة عين شمس

كلية الطب

جامعة عين شمس

2011

Summary

Patients with atherosclerotic disease confined to the infrapopliteal arteries may be asymptomatic due to the excellent collateral network which develops between tibial arteries; one patent tibial artery is often sufficient to keep a patient free from ischemic symptoms

When these patients present with CLI they often have severe, extensive three-vessel disease and only 20–30% have a simple, focal lesion with good distal run-off. Patients are usually elderly with several co-morbidities, such as diabetes and coronary artery disease, which increases the surgical risk.

Recent advances in endovascular interventions have made this minimally invasive approach an important alternative in the treatment of lower extremity occlusive disease. However, despite rapidly evolving endovascular technology, lower-extremity endovascular intervention continues to be one of the most controversial and challenging areas of therapeutic strategy.

As a result of rapid technologic advances that include smaller catheter and balloon profiles, better balloon and guidewire construction, superior imaging equipment, and the introduction of stents,both short- and long-term outcomes of

Contents

T - I-	I -	- C	- 1-	I.		• - •	•	_
Tab	le.	ΩŤ	ar	br	ev	ıat	เดท	ıS

List of tables

Table of figures

_	
Introduction	1
Aim of the work	3
Anatomy of lower limb arterial system	4
Atherosclerosis	19
Evaluation of chronic lower limb ischemia	28
Angioplasty devices	49
Infrapopliteal Angioplasty	. 85
Complications following Angioplasty	. 147
Summary	. 163
References	. 166
الملخص العربي	

Table of abbreviations

ABI Ankle Brachial Index

ABPI Ankle Brachial Pressure Index

ARF Acute Renal Failure

BK Below Knee

BE Balloon Expandable

CB Cutting Balloon Angioplasty

CDTT Catheter-directed intra-arterial thrombolytic therapy

CHD Coronary Heart Disease

CLI Critical Lower Limb Ischemia

CM-ARF Contrast Media-Acute Renal Failure

CM Capillary Microscopy

CRF Chronic Renal Failure

CTO Chronic Total Occlusions

DM Diabetes Mellitus

EC Endothelial Cells

FDA Food and Drug Administration

Fr French

GC Guiding Catheters

ICU Intensive Care Unit

ID Internal Diameter

LACI Laser Angioplasty in Chronic Ischemia

LDF Laser Doppler Fluxmetry

LEAOD Lower extremity arterial occlusive disease

MDCT MultiDetector Computed Tomography

MRA Magnetic Resonance Angiog	graphy
---------------------------------	--------

OD Outer Diameter

OTW Over The Wire system guidewire

PAD Peripheral Arterial Disease

PARIS Peripheral Artery Radiation Investigational Study

PATRIOT | Peripheral Approach to Recanalization in Occluded Totals

PLLA poly-L-lactic acid

PTA Percutaneous Transluminal Angioplasty

rtPA Recombinant tissue plasminogen activator

SCT Spiral Computed Tomography

SE Self Expandable

SFA Superficial Femoral Artery

SIA Sub Intimal Angioplasty

SLP Segmental Limb Systolic Pressure Measurements

SMC Smooth Muscle Cells

TASC Trans Atlantic Inter-Society Consensus

TcpO2 Trans Cutaneous Oxygen measurement

vs vessel

VWF Von Willebrand Factor

VWF Doppler Velocity Wave Form

List of tables

	<u>Page</u>
1-Vascular and neurogenic claudications	30
2-Nonatherosclerotic causes of intermittent claudication	31
3- Classification of peripheral arterial disease	
4- Minimal program for risk evaluation before any endovascular	
intervention	48
5-properties of balloon and self expandable stents	78
6-Grazini classification.	98
7- Thrombolytic agents for CDTT	112
8- Prophylactic strategy for the prevention of contrast media induced	
acute renal failure	158

Table of figures

The figure	Page
1-popliteal fossa	6
2-popliteal artery angiography	
3-angiographic classification of popliteal artery	8
4-variation of popliteal artery bifurcation	10
5-Angiography suite	51
6- A fixed imaging table	54
7-Micropuncture needle	56
8- Different tip shapes of guiding wires	57
9- Hydrophilic guide wires	58
10- Puncture needle and sheath setup	61
11-Power injector	63
12-Guiding catheters	69
13-non selective diagnostic catheters	71
14-selective diagnostic catheters	71
15-balloon expandable stents	81
16-self expanding stents	81
17-covered stents	82

18-drug eluting stents	82	
19-carbon coated stents		
20- Sildenger technique of arterial puncture and the used tools		
21- Diagrammatic representation of subintimal dissection		
22- An example of subintimal angioplasty in the tibial vessels		
23- Illustration of inflated cutting balloon		
24- Schematic of blunt microdissection	105	
25- Directional atherectomy	117	
26- SilverHawk device	118	
27- Rheolytic devices	121	
28- Rotational devices	122	
29- Rotablator therapy of infra popliteal arteries		
30- Orbital atherectomy device		
31- Probe of laser angioplasty	134	
32-Laser system catheter	134	
33- An example of primary long everolimus-eluting stenting		
34- Absorbable stent		
35- Groin pseudoaneurysm	148	

INTRODUCTION

Critical limb ischemia (CLI) is an end-stage manifestation of peripheral artery disease (PAD), and typically describes patients with ischemic rest pain (Rutherford category 4), or patients with ischemic skin lesions, either ulcers or gangrene (Rutherford category 5-6). (Norgren et al., 2007)

Both surgical bypass and endovascular revascularisation are currently accepted modalities for CLI. (*Dawson & Mills*. 2007)

Distal bypass for limb salvage with autogenous conduit is an excellent option for patients who are good candidates for surgical revascularization. However, prohibitive comorbidities, inadequate conduit, and lack of suitable distal targets for revascularization all conspire to erode the pool of good surgical bypass candidates significantly. (Marc et al., 2008)

In most surgical series, the 3-year bypass patency rates of calf arteries ranged from 40% for prosthetic bypasses to 85% for saphenous vein bypasses. (*Adam et al., 2005*)

Notably, the clinical results and limb salvage after PTA

Introduction

are known to be higher than the hemodynamic patency rate and it has been repeatedly shown that healed ischemic lesions do not recur even with restenosis of the dilated vessels. That is, less blood flow is required to keep tissues healed than to achieve healing. Surgical bypass patency, in contrast, always exceeds the limb salvage rate. (Bosiers et al., 2006)

The recently renewed Trans-Atlantic Inter-Society Consensus Document on management of PAD (TASC II) indicates there is increasing evidence to support a recommendation for angioplasty in patients with CLI and Below Knee (BK) artery occlusion where in-line flow to the foot can be reestablished. (Norgren et al., 2007)

AIM OF THE WORK

This study aims to highlight the effect of Infrapopliteal Angioplasty as a line of treatment of distal occlusive disease.

Anatomy of Lower Limb Arterial System

Femoral Artery

The common femoral artery is the continuation of the external iliac artery. It begins at the level of the inguinal ligament and ends when it originates the arteria profunda femoris. The continuation of the common femoral artery is then called the superficial femoral artery. The superficial femoral artery extends down the leg, where it passes through the adductor canal originating the popliteal artery. The femoral nerve (most lateral), the common femoral artery (in the centre), and the common femoral vein (most medial) have a constant relationship when they pass under the inguinal ligament and reach the inguinal compartment, surrounded by muscles forming a bundle.

Branches

(Williams et al., 1999)

- Superficial epigastric artery
- Superficial circumflex iliac artery
- Superficial external pudendal artery
- Deep external pudendal artery

Anatomy of Lower Limbs Arteries

- Arteria profunda femoris
- Superficial femoral artery
- Muscular branches
- Descending genicular arteries. (Williams et al., 1999)

Popliteal Artery

It is critical to understand the anatomy of the popliteal fossa when performing percutaneous popliteal artery access to prevent the creation of an arteriovenous fistula in percutaneous posterior access to puncture of the popliteal vein. (*Jenkins*, 2008)

The popliteal artery, vein, and sciatic nerve are encased in a common sheath, which courses upwards along the diagonal of the popliteal fossa. These structures usually remain superficial in location well above the level of the joint space. The semitendinous muscle is seen anterior to the artery. (*Jenkins*, 2008)

The popliteal artery, which is the continuation of the femoral artery, crosses the popliteal fossa. From the opening in adductor magnus it descends laterally to the intercondylar fossa, where it divides into the anterior and posterior tibial arteries. The artery is relatively tightened at the adductor magnus hiatus and again distally by the fascia related to soleus. It is therefore vulnerable to

traction during knee injuries, e.g. dislocation. (Valentine & Wind, 2003)

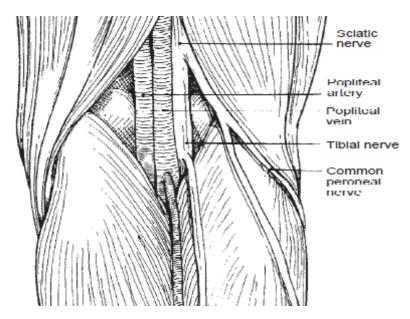


Figure (1) The popliteal fossa. (Jenkins, 2008)

Branches

- Cutaneous branches
- Superior muscular branches
- Sural arteries
- Superior genicular arteries
- Middle genicular artery
- Inferior genicular arteries. (Uflacker, 2007)