

## Treatment of Landfill Leachate by Using Certain Types of Bacteria

Thesis Submitted in Partial Fulfillment of the Requirements for the Master Degree (M.Sc.) of Science in Microbiology

### By

### **Rehab Gamal Hassan Ahmed**

B.Sc. Microbiology – Chemistry (2005)
Microbiology Department, Faculty of Science,
Ain- Shams University

To Microbiology Department Faculty of Science Ain-Shams University 2011



Faculty of Science Microbiology department

## Treatment of Landfill Leachate by Using Certain Types of Bacteria

Thesis Submitted in Partial Fulfillment of the Requirements for the Master Degree (M.Sc.) of Science in Microbiology

### By Rehab Gamal Hassan Ahmed

B.Sc. Microbiology - Chemistry (2005)

#### **Supervised By**

Dr. Nagwa Ahmed Abdallah Ass. Prof. of Microbiology, Faculty of science, Ain- Shams University Dr. Maha Moustafa El Shafei Prof. of Chemical Engineering, Housing and Building National Research Center

Dr. Salah A. Abo El Enein
Prof. of Physical Chemistry
Faculty of Science, Ain Shams University
2011



#### Faculty of Science Microbiology department

### **Approval Sheet**

Name: Rehab Gamal Hassan Ahmed

**Title:** "Treatment of Landfill Leachate By Using Certain Types of Bacteria"

This thesis for M. Sc. Degree has been approved by the following committee:

|    | Thesis advisors                                  | Thesis approved |
|----|--------------------------------------------------|-----------------|
| 1. | Dr. Nagwa Ahmed Abd Allah:                       | •••••           |
|    | Ass. Prof. of Microbiology,                      |                 |
|    | Faculty of science, Ain-Shams University.        |                 |
| 2. | Dr. Maha Moustafa El Shafei:                     | •••••           |
|    | <b>Prof. of Chemical Engineering, Housing</b>    |                 |
|    | and Building National Research Center            |                 |
| 3. | Dr. Salah A. Abo El Enein:                       | •••••           |
|    | Prof. of Physical Chemistry,                     |                 |
|    | <b>Faculty of Science , Ain Shams University</b> |                 |

**Head of Microbiology Department** 

Prof.Dr. Zahraa Ahmed Karm EL- Din



# معالجة العصارة الناتجة من مقالب المخلفات الصلبة باستخدام أنواع معينة من البكتيريا

رسالة مقدمة كجزء متطلب للحصول على درجة الماجستير في العلوم تخصص (ميكروبيولوجي)

رسالة مقدمة من رحاب جمال حسن احمد بكالوريوس ميكروبيولوجي كيمياء ٢٠٠٥ كلية العلوم جامعة عين شمس

> الى قسم الميكروبيولوجى كلية العلوم جامعة عين شمس



## معالجة العصارة الناتجة من مقالب المخلفات الصلبة باستخدام أنواع معينة من البكتيريا

رسالة مقدمة كجزء متطلب للحصول على درجة الماجستير في العلوم تخصص (ميكروبيولوجي)

رسالة مقدمة من رحاب جمال حسن احمد بكالوريوس ميكروبيولوجي كيمياء ٢٠٠٥ كلية العلوم جامعة عين شمس

تحت اشراف

أ.د. مها مصطفى الشافعى استاذ الهندسة الصحية و البيئية المركز القومى لبحوث الاسكان و البناء

د. نجوى احمد عبداللة استاذ مساعد بقسم الميكروبيولوجى كلية العلوم-جامعة عين شمس

أ.د. صلاح عبد الغنى ابو العينين استاذ الكيمياء الفيزيائية كلية العلوم المجامعة عين شمس



### رسالة الماجستير في العلوم في الميكروبيولوجي

اسم الطالب: رحاب جمال حسن احمد

عنوان الرسالة: " معالجة العصارة الناتجة من مقالب المخلفات الصلبة باستخدام

أنواع معينة من البكتيريا "

#### لجنة الاشراف

د. نجوى احمد عبداللة استاذ مساعد بقسم الميكروبيولوجي كلية العلوم- جامعة عين شمس الد. مها مصطفى الشافى استاذ الهندسة البيئية و الصحية بالمركز القومي لبحوث الاسكان و البناء الد. صلاح عبد الغنى ابو العيني استاذ الكيمياء الفيزيائية كلية العلوم – جامعة عين شمس.

#### لجنة الحكم

ا.د. زينب حسن خيرالله استاذ الميكروبيولوجي كلية بنات عين شمس الميكروبيولوجي كلية بنات عين شمس الميكروبيولوجي كلية العلوم- جامعة عين شمس الميكروبيولوجي كلية العلوم- جامعة عين شمس الميكروبيولوجي كلية العلوم- استاذ الهندسة البيئية و الصحية بالمركز القومي لبحوث الاسكان و البناء

ختم الاجازة: اجيزت الرسالة بتاريخ:

Y.11/ /

موافقة مجلس الكلية موافقة مجلس الجامعة

7.11/ / 7.11/ /

صفحة العنوان



اسم الباحث : رحاب جمال حسن احمد

الدرجة العلمية : الماجستير في العلوم في الميكروبيولوجي

القسم التابع له :ميكروبيولوجي

اسم الكلية : العلوم

الجامعة عين شمس

سنة التخرج :٢٠٠٥

سنة منح الماجستير: ٢٠١١

### **Abstract**

Sanitary landfill is a process in the solid waste management system. It can be defined as "a method of disposing of refuse on land without creating nuisances or hazards to public health or safety, by utilizing the principles of engineering to confine the refuse to the smallest practical area, to reduce it to the smallest practical volume, and to cover it with a layer of earth at the conclusion of each day's operation or at such more frequent intervals as may be necessary." Leachate can be defined as liquid that passes through the landfill and has extracted dissolved and suspended matter from it. Leachate results from precipitation entering the landfill and from moisture that exists in the waste when it is composed. Its generation is a major problem for municipal solid waste (MSW) landfills. In Alexandria city 2500 tons of solid waste produced per day this daily produces about 100 m<sup>3</sup> of leachate. If it is not collected and treated properly soil and ground water table shall be polluted and it might take years to be treated. In delta zone the problem becomes much extreme. For these reasons leachate treatment is considered an urgent issue. Since solid waste management becomes an essential issue and leachate is considered as very hazard, this study is done to apply innovation method that is low tech, simple in application, financially low cost and environmentally compatible.

The most potent ten effective microorganisms (EMs) were isolated and selected from landfill leachate by pour plate method. The Ems each organism separately could remove 29% to 45% of COD from leachate, 91% of BOD5, 62% to 71% from ammonia , 93% to 100% of nitrate and 68% to 86% from phosphorous . Mixing the four best selected strains did not show any

### Abstract

antagonistic activity between each other as their biodegradability did not reduced than the minimal capability of each isolate but it was sometimes exceeded the maximum ability of the highest effective microorganism.

### **Contents**

| Subject                                                               | Page |
|-----------------------------------------------------------------------|------|
| List of Tables                                                        | IV   |
| List of Figures                                                       | V    |
| List of Abbreviations                                                 | IX   |
| Introduction                                                          | 1    |
| Aim of Work                                                           | 3    |
| Chapter one<br>Literature Review                                      | 6    |
| 1.1 What are solid wastes                                             | 6    |
| 1.2 Integrated solid waste management                                 | 8    |
| 1.3 Landfills                                                         | 9    |
| 1.3.1 Necessity of landfills                                          | 14   |
| 1.3.2 Secured landfills                                               | 14   |
| 1.3.3 Landfill design goals                                           | 18   |
| 1.3.4 Types of landfills                                              | 20   |
| 1.3.5 Landfill site selection                                         | 21   |
| 1.3.6 Ground water monitoring and surface water pollution and control | 28   |
| 1.3.7 Environmental impact of solid waste                             | 31   |
| 1.4 Leachate                                                          | 32   |
| 1.4.1 Statement of leachate problem                                   | 32   |
| 1.4.2 Leachate composition and treatment                              | 34   |

| Chapter two<br>Material & Methods                                                                                                                    | 47 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.1 leachate source                                                                                                                                  | 48 |
| 2.1.1 Muncipal Solid Waste Cycle in Onyx Company                                                                                                     | 48 |
| 2.1.2 Veolia in Alexandria                                                                                                                           | 50 |
| 2.2 Sampling of leachate                                                                                                                             | 53 |
| 2.2.1 Samples for microbiological analysis                                                                                                           | 53 |
| 2.2.2 Samples for Chemical analysis                                                                                                                  | 53 |
| 2.3 Techniques & Methods for chemical analysis                                                                                                       | 54 |
| and identification of the best isolated strains                                                                                                      |    |
| 2.3.1 Tests for identification of the chemical composition of leachate before, during and after addition of bacterial isolates                       | 54 |
| 2.3.1.1 Chemical Oxygen Demand                                                                                                                       | 54 |
| 2.3.1.2 Biological Oxygen Demand                                                                                                                     | 56 |
| 2.3.1.3 Ammonia                                                                                                                                      | 58 |
| 2.3.1.4 Nitrate                                                                                                                                      | 60 |
| 2.3.1.5 Phosphprous                                                                                                                                  | 61 |
| 2.3.1.6 Total Suspended Solids                                                                                                                       | 62 |
| 2.3.2 Tests for identification of the bacterial count and spore former bacteria in leachate before, during and after addition of bacterial isolates: | 64 |
| 2.4 Isolation media                                                                                                                                  | 65 |
| 2.5 Purification of isolated bacteria                                                                                                                | 66 |
| 2.6 Determination of the biodegradation kinetics of the selected isolated bacteria                                                                   | 67 |
| 2.7 Identification of the most potent leachate degrading bacterial isolate                                                                           | 67 |

| Chapter three                                                                                  | 69  |
|------------------------------------------------------------------------------------------------|-----|
| Results                                                                                        | 09  |
| 3.1 Introduction                                                                               | 69  |
| 3.2 Physio-Chemical Characteristics of landfill leachate                                       | 69  |
| 3.3 Biological analysis of landfill leachate                                                   | 71  |
| 3.4 Biochemical tests for identification of the ten isolated strain                            | 72  |
| 3.5Chemical examination of landfill leachate after the addition of the ten isolated strains    | 73  |
| 3.6 Biological examination of landfill leachate after the addition of the ten isolated strains | 103 |
| 3.7 Chemical & Biological examination of landfill leachate for the mixture                     | 111 |
| 3.8 Identification of the most potent strains                                                  |     |
| by using biolog <sup>TM</sup> system                                                           | 118 |
| 3.8.1 Clavibacter agropyri                                                                     | 118 |
| 3.8.2 Pseudomonas fluorescens                                                                  | 120 |
| 3.8.3 Brevibacterium epidermis                                                                 | 122 |
| 3.8.4 Bacillus amyloliquefaciens                                                               | 124 |
| Discssion                                                                                      | 126 |
| Conclusions                                                                                    | 133 |
| English summary                                                                                | 135 |
| References                                                                                     | 137 |
| Arabic summary                                                                                 |     |

### **List of Figures**

| Subject                                                                                         | Page |
|-------------------------------------------------------------------------------------------------|------|
| Fig. (1): Dumping Landfill                                                                      | 11   |
| Fig. (2): Secured Landfill                                                                      | 15   |
| Fig. (3): Lining Systems                                                                        | 18   |
| Fig .(4): Leachate source                                                                       | 47   |
| Fig. (5): Leachate sample in lab                                                                | 47   |
| Fig. (6):Solid waste management in Alexandria                                                   | 49   |
| Fig. (7): Leachate samples at laboratory                                                        | 67   |
| <b>Fig. (8):</b> Relation between COD and time after addition of strains 1 and 2                | 74   |
| <b>Fig. (9):</b> Relation between COD and time after addition of strains 3 and 4                | 75   |
| <b>Fig. (10):</b> Relation between COD and time after addition of strains 5 and 6               | 75   |
| <b>Fig. (11):</b> Relation between COD and time after addition of strains 7 and 8               | 76   |
| <b>Fig. (12):</b> Relation between COD and time after addition of strains 9 and 10              | 76   |
| <b>Fig. (13):</b> Percentage of COD removal for the ten isolated strains                        | 77   |
| <b>Fig. (14):</b> Relation between BOD <sub>5</sub> and time after addition of strains 1 and 2  | 79   |
| <b>Fig. (15):</b> Relation between BOD <sub>5</sub> and time after addition of strains 3 and 4  | 79   |
| <b>Fig. (16):</b> Relation between BOD <sub>5</sub> and time after addition of strains 5 and 6  | 80   |
| <b>Fig. (17):</b> Relation between BOD <sub>5</sub> and time after addition of strains 7 and 8  | 80   |
| <b>Fig. (18):</b> Relation between BOD <sub>5</sub> and time after addition of strains 9 and 10 | 81   |
| Fig. (19): Percentage of BOD 5 removal for the ten                                              | 81   |

| isolated strains                                                                           |    |
|--------------------------------------------------------------------------------------------|----|
| <b>Fig. (20):</b> Relation between Ammonia and time after addition of strains 1 and 2      | 83 |
| <b>Fig. (21):</b> Relation between Ammonia and time after addition of strains 3 and 4      | 84 |
| <b>Fig. (22):</b> Relation between Ammonia and time after addition of strains 5 and 6      | 84 |
| <b>Fig. (23):</b> Relation between Ammonia and time after addition of strains 7 and 8      | 85 |
| <b>Fig. (24):</b> Relation between Ammonia and time after addition of strains 9 and 10     | 85 |
| Fig. (25): Percentage of Ammonia removal for the ten isolated strains                      | 86 |
| <b>Fig. (26):</b> Relation between Nitrate and time after addition of strains 1 and 2      | 88 |
| <b>Fig. (27):</b> Relation between Nitrate and time after addition of strains 3 and 4      | 88 |
| <b>Fig. (28):</b> Relation between Nitrate and time after addition of strains 5 and 6      | 89 |
| <b>Fig. (29):</b> Relation between Nitrate and time after addition of strains 7 and 8      | 89 |
| <b>Fig. (30):</b> Relation between Nitrate and time after addition of strains 9 and 10     | 90 |
| <b>Fig. (31):</b> Percentage of Nitrate removal for the ten isolated strains               | 90 |
| <b>Fig. (32):</b> Relation between phosphorous and time after addition of strains 1 and 2  | 92 |
| <b>Fig. (33):</b> Relation between phosphorous and time after addition of strains 3 and 4  | 92 |
| <b>Fig. (34):</b> Relation between phosphorous and time after addition of strains 5 and 6  | 93 |
| <b>Fig. (35):</b> Relation between phosphorous and time after addition of strains 7 and 8  | 93 |
| <b>Fig. (36):</b> Relation between phosphorous and time after addition of strains 9 and 10 | 94 |

| Fig. (37): Percentage of phosphorous removal       | 94      |
|----------------------------------------------------|---------|
| for the ten isolated strains                       | 74      |
| Fig. (38): Relation between Total Suspended        | 96      |
| Solids and time after addition of strains 1 and 2  | 90      |
| Fig. (39): Relation between Total Suspended        | 96      |
| Solids and time after addition of strains 3 and 4  |         |
| Fig. (40): Relation between Total Suspended        | 97      |
| Solids and time after addition of strains 5 and 6  | 71      |
| Fig. (41): Relation between Total Suspended        | 97      |
| Solids and time after addition of strains 7 and 8  | <i></i> |
| Fig. (42): Relation between Total Suspended        | 98      |
| Solids and time after addition of strains 9 and 10 | 70      |
| Fig. (43): Percentage of Total Suspended Solids    | 98      |
| removal for the ten isolated strains               | 90      |
| Fig. (44): Relation between PH and time after      | 100     |
| addition of strains 1 and 2                        | 100     |
| Fig. (45): Relation between PH and time after      | 100     |
| addition of strains 3 and 4                        |         |
| Fig. (46): Relation between PH and time after      | 101     |
| addition of strains 5 and 6                        | 101     |
| Fig. (47): Relation between PH and time after      | 101     |
| addition of strains 7 and 8                        | 101     |
| Fig. (48): Relation between PH and time after      | 102     |
| addition of strains 9 and 10                       | 102     |
| Fig.(49): Relation between Total Bacterial Count   | 104     |
| and time after addition of strains 1 and 2         | 101     |
| <b>Fig.(50):</b> Relation between Total Bacterial  | 105     |
| Count and time after addition of strains 3 and 4   | 103     |
| <b>Fig.(51):</b> Relation between Total Bacterial  | 105     |
| Count and time after addition of strains 5 and 6   | 105     |
| Fig.(52): Relation between Total Bacterial         | 106     |
| Count and time after addition of strains 7 and 8   | 100     |
|                                                    |         |