Role of on-line haemodiafiltration in improving cardiovascular morbidities in pediatric end stage renal disease patients

Thesis

Submitted for partial fulfillment of MD degree in Pediatrics

By

Ahmad Helmi Aon

M.B.B.Ch & M.Sc.

Faculty of Medicine, Cairo University

Supervised by

Prof. Dr. Fatina Ibrahim Fadel

Professor of Pediatrics Faculty of Medicine, Cairo University

Assist, Prof. Samuel Helmi Makar

Assistant Professor of Pediatrics Faculty of Medicine, Cairo University

Dr. Hanan Zekri Khaled

Dr. Dina Hesham Ahmed

Lecturer of Pediatrics

Lecturer of Chemical Pathology Faculty of Medicine, Cairo University Faculty of Medicine, Cairo University

> **Faculty of Medicine Cairo University** 2012

(سورة البقرة - الآية ٣٢)

<u>Acknowledgement</u>

First of all, thanks to ALLAH who gave me the will to start, the power to continue and the goal to reach.

It's a pleasure to express my deepest thanks and profound respect to my honored professor. Prof. Dr. Fatina Fadel, Professor of Pediatrics, Faculty of Medicine. Cairo University, for her continuous encouragement, valuable supervision and guidance throughout this work. It has been an honor and a privilege to work under her generous supervision.

I would like to express my sincere appreciation to Assist. Prof. Dr. Samuel Makar, Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University for his continuous guidance, supervision and valuable suggestions. No matter what I say could ever express my deepest thanks to him.

Words cannot express my feelings of gratitude and respect to Dr. Hanan Zekri, Lecturer of Pediatrics, Faculty of Medicine, Cairo University. She was (from the start) helping, encouraging and supporting. In the true meaning of words I can't thank her enough for her time and her effort.

I'm also deeply grateful and would like to express my sincere thanks and gratitude to Dr. Dina Hesham. Lecturer of Chemical Pathology, Faculty of Medicine. Cairo University for her continuous instructing guidance and sincere help and valuable support.

I would also like to thank all the staff members of nephrology department, endocrinology lab unit, echocardiography lab and arrhythmia clinic who made my research easier with their generous help and cooperation.

Last but not the least. I am deeply thankful and always indebted to my parents and my family, who were always supporting and encouraging me.

Contents

Торіс		Page number
Abstract		i
List of abbreviations		ii
List of figures		vi
List of ta	bles	vii
Introduct	ion and aim of the work	1
<u>د .</u>	CHAPTER 1: Uremic milieu in chronic kidney disease	4
ew o	CHAPTER 2: Homocysteine	30
Review of literature	CHAPTER 3: Cardiovascular complications & chronic kidney disease	43
	CHAPTER 4: On-line haemodiafiltration	57
Subjects and methods		75
Results		84
Discussion		94
Conclusion and recommendations		110
Summary		113
References		114
Arabic summary		141

Abstract

Background: Cardiovascular disease is an important cause of morbidity and mortality in patients undergoing maintenance dialysis. There is evidence supporting a direct role for the uremic milieu, and an indirect role as well, for enhanced cardiovascular complications. On-line dialysis modalities, such as on-line hemodiafiltration, raise particular concerns because not only small molecules are removed more effectively as compared to low-flux hemodialysis, but in addition, a considerable clearance of so-called middle molecular weight (MMW) substances is obtained including those involved in cardiovascular morbidities.

Objectives: To assess the effect of on-line hemodiafiltration on removal of uremic toxins that cannot be removed during conventional hemodialysis, e.g. homocysteine, and improving the chronic inflammatory state associated with chronic kidney disease and the possible impact of these changes on myocardial function in chronic hemodialysis patients.

Methods: In this study, we compared different clinical, lab and radiological data of 30 chronic hemodialysis pediatric patients on low-flux hemodialysis with the same data after 6 months of initiation of predilution on-line hemodiafiltration to clarify the possible impact of on-line hemodiafiltration on cardiovascular system in those patients.

Key words: On-line hemodiafiltration, homocysteine, cardiovascular morbidities, chronic inflammatory state.

List of abbreviations

AAMI	American Association for the advancement of Medical Instrumentation
ACE	Angiotensin converting enzyme
ADEMEX	"ADEquacy of peritoneal dialysis in MEXico" study
study	
ADMA	Asymmetric dimethyl arginine
ADP	Adenosine diphosphate
AFB	Acetate free biofiltration
AGEs	Advanced glycosylation end products
ALP	Alkaline phosphatase
ANP	Atrial natruritic peptide
ARBs	Angiotensin receptor blocker
ASE	American society of echocardiography
ATP	Adenosine triphosphate
B ₂ M	Beta 2 microglobulin
BMI	Body mass index
BP	Blood pressure
BSA	Body surface area
BUN	Blood urea nitrogen
CE	Carbon end
Ca	Calcium
Ca X P	Calcium phosphorus solubility product
CAPD	Chronic ambulatory peritoneal dialysis
CFU	Colony-forming unit
CIN	Chronic interstitial nephritis
CKD	Chronic kidney disease
CI	Chloride
CMPF	3-Carboxy 4-methyl 5propyl 2-furanopropionic acid
CONTRAST	the "Dutch CONvective TRAnsport Study"
study	
CPNT	Centre of Pediatric Nephrology and Transplantation
Crea	Creatinine
CRF	Chronic renal failure
CRP	C- reactive protein
CVD	Cardiovascular disease
Da	Dalton
DBP	Diastolic blood pressure

DBPI	Diastolic blood pressure index
DNA	Deoxyribonucleic acid
DOPPS	Dialysis Outcomes & Practice Patterns Study
DT	Mitral deceleration time
DTT	Dithiothreitol
E/A ratio	Early diastole/ atrial contraction ratio
ECG	Electrocardiography
EDTA	Ethylene diamine tetraacetic acid
EF	Ejection fraction
ESA	Erythropoiesis stimulating agents
ESRD	End stage renal disease
EU	Endotoxin unit
FS	Fractional shortening
FSGS	Focal segmental glomerulosclerosis
GFR	Glomerular filtration rate
HCT	Hematocrit
Нсу	Homocysteine
HD	Hemodialysis
HEMO study	The "HEMOdialysis" study
HF	Heart failure
HF	Hemofiltration
HGB	Hemoglobin
HMG-CoA	3- Hydroxyl 3- methyl glutaryl CoA
Hs-CRP	High sensitivity C- reactive protein
HTN	Hypertension
HUS	Hemolytic uremic syndrome
IL	Interleukin
iNOS	Inducible nitric oxide synthase
IVSTD	Interventricular septum thickness in diastole
K	Potassium
K/DOQI	Kidney disease outcome quality initiatives
kDa	Kilo Dalton
LDL	Low density lipoprotein
LMW	Low molecular weight
LVH	Left ventricular hypertrophy
LVIDD	Left ventricular internal diameter in diastole
LVMI	Left ventricular mass index
MBP	Mean blood pressure
MBPI	Mean blood pressure index

MCD	Managarta ahamaattraatant protein
	Monocyte chemoattractant protein
	Mega Hertz
	Malnutrition- inflammation- atherosclerosis
	Malnutrition- inflammation complex syndrome
	Millimeter mercury
	Middle molecular weight
	Methylene tetrahydrofolate reductase
	Molecular weight
	Sodium
NADH N	Nicotinamide adenine dinucleotide hydrogen
	National kidney foundation
	Nitric oxide
	On-line haemodiafiltration
+	Oral phosphate binder
	Phosphorus
	Para amino hippuric acid
	Plasminogen activator inhibitor-1
PD F	Peritoneal dialysis
PEM F	Protein energy malnutrition
	Poly tetrafluoroethylene
PTH F	Parathyroid hormone
PUJO F	Pelviureteric junction obstruction
PUV F	Posterior urethral valve
PWTD F	Posterior wall thickness in diastole
	Quality of life
RISCAVID "	RISchio CArdiovascolare nei pazienti afferenti all area
study \	/asta In Dialisi"
RO F	Reverse osmosis
SAH S	S- adenosyl homocysteine
SAL S	Sterility assurance level
L	S- adenosyl methionine
L	Systolic blood pressure
SBPI S	Systolic blood pressure index
SDMA S	Symmetric dimethyl arginine
T4	Thyroxine
tHcy T	Total homocysteine
THF T	Tetrahydrofolate
TMP T	

TNF	Tumor necrosis factor
UF	Ultrafiltration
USRDS	United States registry data system
UTI	Urinary tract infection
VC	Vascular calcification
VSMC	Vascular smooth muscle cell
VUR	Vesico-ureteric reflux

List of figures

Figure	Content	Page
number		number
Figure 1	Pathways of homocysteine metabolism	32
Figure 2	Total plasma homocysteine level and prevalence of carotid artery stenosis	37
Figure 3	Flow diagram for different forms of haemodiafiltration (HDF) showing possible convective removal	63
Figure 4	The circuit of on-line hemodiafiltration with post dilution	65
Figure 5	The circuit of on-line hemodiafiltration with pre dilution	66
Figure 6	Standard dialyser configuration in mid-dilution on-line haemodiafiltration	67
Figure 7	Preparation of sterile, non-pyrogenic substitution fluid for on-line convective therapies	69
Figure 8	Sex distribution among the study group	85
Figure 9	Primary renal disease distribution among the study group	86
Figure 10	Frequency of hyperhomocysteinemia among the study group	88
Figure 11	Correlation between MBPI and LVMI both during HD and HDF among the study group	90
Figure 12	Correlation between LVMI & serum Phosphorus; LVMI & Ca X P solubility product during HD among the study group	91
Figure 13	Frequency of myocardial diastolic dysfunction among the study group	92

List of tables

Table number	Content	Page number
Table 1	Criteria of uremic toxins	6
Table 2	Main known retention uremic solutes	7
Table 3	Interpretation of serum CRP levels & atherosclerotic cardiovascular disease	26
Table 4	Pathophysiologic mechanisms relating homocysteine to atherothrombosis	38
Table 5	Outline of causes of hyperhomocysteinemia	40
Table 6	Outline of therapeutic options for lowering homocysteine	41
Table 7	Lab data of all cases included in the study	87
Table 8	Blood pressure measurements among the study group	89
Table 9	Mean blood pressure index among the study group	89
Table 10	Echocardiographic findings among the study groups	93
Table 11	Comparative statistics between some ECG findings among the study groups	93

Introduction and aim of the work

Introduction:

Reviewing the current picture of uremic toxins reveals its complexity. Focusing on cardiovascular damage as a model of uremic effects resulting in substantial morbidity and mortality, most molecules with potential to affect the function of a variety of cell types within the vascular system are difficult to remove by conventional dialysis. Examples are the larger middle molecular weight molecules and protein-bound molecules. Recent clinical studies suggest that enhancing the removal of these compounds, whether through improving the removal of toxins or the search for pharmacologic strategies blocking responsible pathophysiologic pathways, is beneficial for survival of patients on maintenance hemodialysis (Vanholder et al., 2008).

Furthermore, repetitive exposure to cytokine-inducing substances (pyrogens) results in chronic inflammation, which may significantly contribute to some of the long-term complications in dialysis patients especially cardiovascular one (Canaud et al., 2001).

On-line dialysis modalities, such as on-line haemodiafiltration, raise particular concerns because not only small molecules (<5 kDa) are removed more effectively as compared to low-flux hemodialysis, but in addition, a considerable clearance of so-called middle molecular weight substances (5–50 kDa) is obtained (*Van der Weerd et al., 2008*).

Aim of the work:

- 1- To assess the effect of on-line hemodiafiltration on:
 - ➤ Predialysis serum total Homocysteine level as a reflection of uremic toxins implicated in cardiovascular morbidities, and not commonly removed during conventional HD.
 - > High-sensitivity C-reactive protein as a marker of chronic inflammatory state.
- 2- to study the effect of on-line HDF on myocardial function (including left ventricular hypertrophy, systolic, and diastolic dysfunction) in chronic kidney failure patients on maintenance hemodialysis and the possible correlation with other clinical and lab parameters.

REVIEW OF LITERATURE

Uremic milieu in chronic kidney disease