Evaluation of Bone Mineral Density and Body Composition in 6-7 Year old Egyptian Males

Thesis

Submitted for Partial Fulfillment of the Master Degree in Pediatrics

By

Ibrahim Mohammed Ibrahim

M.B., B. CH., Mansoura University (2003)

Under Supervision of

Prof. Dr. Mohamed Salah El-Din El-Kholy

Professor of Pediatrics
Faculty of Medicine- Ain Shams University

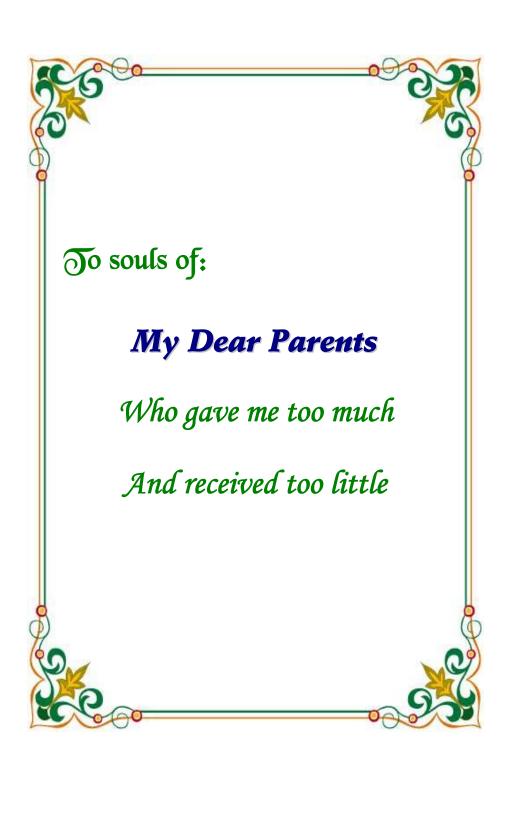
Prof. Dr. Heba Hassan ELsedfy

Professor of Pediatrics Faculty of Medicine- Ain Shams University

Dr. Rasha Tarif Hamza

Assistant Professor of Pediatrics
Faculty of Medicine- Ain Shams University
Faculty of Medicine
Ain Shams University
2012

First of all, thanks to **ALLAH** whose magnificent help was the main factor in completing this work.


It is a great honour to me to express my deepest gratitude and appreciation to **Prof. Dr. Mohamed Salah & Din & Xholy**; Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his valuable help, precious advice, continuous encouragement and constructive guidance that were the most driving forces in the initiation and progress of this work.

I wish to express my unlimited gratitude to **Prof. Dr.**Weba Hassan & Sedfy; Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her supervision, helpful discussions and suggestions. In fact, few words never suffice to do justice in thanking her for her extraordinary contribution of time, effort and valuable experience.

I can't fully express my deepest thanks to **Dr. Rasha**Tarif Hamza; Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her patience, assistance and very helpful advice and guidance during the progress of this work.

My special thanks to all my children and their parents who agreed to share in this study. I'm thankful to them for their effort, time and cooperation.

Ibrahim Mohammed

List of Contents

Title	Page No.
List of Abbreviations	I
List of Tables	<i>IV</i>
List of Figures	VI
Introduction	1
Aim of the Work	<i>3</i>
Review of Literature	
 Normal bone anatomy and physiology 	4
Osteoporosis	31
Calcium and phosphorus	37
 Dual energy X-ray absorptiometry 	56
Subjects and Methods	76
Results	87
Discussion	105
Summary	117
Conclusions	120
Recommendations	121
References.	122
Appendix	
Arabic summary	

List of Abbreviations

AAP	American Academy of Pediatrics.
aBMD	areal bone mineral density
ALP	Alkaline phosphatase
ATP	Adenosine triphosphate
BA	Bone age
BMC	Bone mineral content
BMD	Bone mineral density
BMPs	Bone morphogenetic proteins
BMU	Basic multicellular unit
cAMP	Cyclic adenosine monophosphate
CaBP	Cytosolic calcium binding protein
CSF	Colony stimulating factor
CFU-GM	Colony-forming unit for granulocyte-macrophage
CGRP	Calcitonin gene-related peptide
DEXA	Dual energy X-ray absorptiometry
ECM	Extra cellular matrix
FACIT	Fibril associated collagen with interrupted triple
FFM	Fat free mass
FGF	Fibroblast growth factor
GH	Growth hormone
IGF	Insulin growth factor
IGFBPs	IGF-binding proteins
Ihh	Indian hedgehog
IL	Interlukin
ISCD	International Society of Clinical Densitometry
<u> </u>	1

Tr.				
JIA	Juvenil idiopathic arthritis			
LBM	Lean body mass			
LDL	Low density lipoprotein			
LRP5	Low-density lipoprotein receptor related protein 5			
M-CSF	Macrophage colony stimulating factor			
MEPE	Matrix extracellular phosphoglycoprotein			
mM	Millimolar			
MMP	Matrix metalloprotease			
mSv	Millisievert			
nM	Nanomolar			
OP	Osteoprosis.			
OPG	Osteoprotegrin			
PBM	Peak bone mass			
PDGF	Platlet derived growth factor			
PKC	Protein kinase C			
PMCA1	Plasma membrane calcium ATPase			
PQCT	Peripheral quantitative computed tomography			
PGE ₂	Prostaglandin E ₂			
PTH	Parathyroid hormone			
PTHrP	PTH related peptide			
QUS	Quantitative ultrasound			
RA	Radiographic absorptiometry			
RANK	Receptor activation of nuclear factor kappa			
RANKL	Receptor activator of nuclear factor карра В			
	Ligand			
RDI	Recommended daily intake			
rhPTH	Recombinant human parathyroid hormone			
L	1			

RGD	Arginin, glycin and asparagines		
ROIs	Regions of interest		
SD	Standard deviation		
SDS	Standard deviation score		
SIBLING	Small integrin Binding Ligand N - glycosylated		
proteins	proteins		
SPECT	Single-photon emission computed tomography		
SXA	Single-energy x-ray absorptiometry		
TGF β	Transforming growth factor beta		
TNF	Tumer necrosis factor		
TRPV6	Transient receptor potential vanilloid6		
μM	Micromolar		
vBMD	Volumetric bone mineral density		
VDR	Vitamin D receptor		
VEGF	Vascular endothelial growth factor		
VFA	Vertebral fracture assessment		
WBPA	Weight bearing physical activity		

List of Tables

Table No.	Title	Page No.
Table (1): Effe	cts of GH on bone.	24
Table (2): Gro	wth Factors.	27
Table (3): Cal	cium Absorption	39
Table (4):	Mechanisms of gastrointestinal cabsorption	alcium
	commendations for adequate dietary of intake in the United States	
Table (6): Ser	um phosphorus levels during childhood .	41
Table (7): Die	tary Phosphorus	43
Table (۸): Reg	ulation of Parathyroid Hormone Release	3
Table (9): Con	nmon terms seen in a DEXA report	58
` /	naging options used for osteoporosis disscreening, or fracture assessment	•
Table (11): Co	mmon pitfalls in DEXA interpretation	71
	ffective doses in densiometry compare other common radiation sources	
	stribution of age,dietary calcium inta exposure, and phyiscal activity	
Table (14): So	cioeconomic Factors	87
Table (15): Ar	thropometric measurements	87
Table (16): La	boratory bone parameters	88
Table (17):. D	EXA bone parameters	88
Table (18): Co	rrelations between DEXA parameters a	nd age 89
Table (19): Cor	relations between DEXA parameters and cal	cium intake 90
Table (20): Co	rrelations between DEXA parameters and su	n exposure91
	orrelation between DEXA parameters and factors	

Table	(22):	Correlation score		parameters	
Table	(23): (Correlations b and its SDS	-	ameters and	_
Table	(24): C	Correlation be height SDS		meters & eac	_
Table	(25): C	Correlation be its SDS arai		neters and ea	
Table	(26):	Correlations l parameters.	-	bone parame	
Table	(27):	Correlations activity		parameters	

List of Figures

Fig. No	. Title	Page No.
Fig. (1):	Compact bone & Spongy (Cancellous) Bone	7
Fig. (2):	Cross-section of a typical osteon	9
Fig. (3):	Illustrated cross-section of an activated osteoclast	11
Fig. (4):	Regulation of osteoclasts and bone resorption	12
Fig. (5):	Regulation of osteoblasts and bone formation	13
Fig. (6):	Structure of osteoblasts and osteocytes	14
Fig. (7):	Bones elongate by means of secondary centers of os	sification 18
Fig. (8):	During endochondral ossification, mesenchymal cell into chondrocytes and lead to the formation of cartitemplates	lage
Fig. (9):	The process of eendochondral ossification is dependent neovascularization	
Fig. (10):	The process of endochondral ossification depends u in the expression of ECM molecules	
Fig. (11):	Peak Bone Mass Schematic representation in relative normal skeletal development	
Fig. (12)	Plain film demonstrating decreased bone density as radiolucency of the vertebrae with accentuation of rim	the cortical
Fig. (13):	Osteoclast displaying many nuclei within its "foamy"	
Fig. (14)	: Renal and extrarenal 1,25(OH)2D3 production servautocrine, and paracrine functions	
Fig. (15):	Regulation of epithelial calcium transport by 1,25(OH) ₂ D ₃ 48

Fig. (16): Synthesis and Metabolism of Vitamin D	50
Fig. (17): Negative feedback regulation of parathyroid hormone release	52
Fig. (18): The parathyroid axis	54
Fig. (19): A scanner used to measure bone density with DEXA	57
Fig. (20): Correct positioning and analysis of the L1–L4 spine a and the proximal femur	67
Fig. (21): DEXA images show regions of interest	69
Fig. (22): Correlation between age and lumbar spine BMD	90
Fig. (23): Correlation between Calcium intake and Subtotal body BMD	91
Fig. (24): Correlation between sunlight exposure and fat percentage	92
Fig. (25): Correlation between family income and lumbar spine z- score	. 94
Fig. (26): Correlation between El-Bohy score and lean body mass	. 95
Fig. (27): Correlation between weight SDS and whole body BMD	. 97
Fig. (28): Correlation between weight SDS and whole body z-score	.97
Fig. (29): Correlation between height and whole body BMD	. 99
Fig. (30): Correlation between height and whole body z-score	. 99
Fig. (31): Correlation between height and femoral neck BMD	.100
Fig. (32): Correlation between Alkaline phosphatase and Whole body BMC	103
Fig. (33): Correlation between Alkaline phosphatase and lean body mass	103
Fig. (34): Correlation between physical activity and whole body BMD	104

Introduction

Bone densitometry is a widely used and universally accepted tool for the assessment of bone mass in adults. In the last two decades, however, interest in bone densitometry in children has increased. This can be explained first by the introduction of more effective treatment regimens aimed at increasing and maintaining bone density in a variety of diseases influencing bone development and or growth and secondly, by the fact that several reports have indicated the importance of peak bone mass in relation to future development of osteoporosis (*Van Rijn et al.*, 2006).

There are 2 main reasons for measuring bone mineral content (BMC) in children: to quantify the deficits in bone mineral associated with the various disorders that cause osteopenia in children and to improve our understanding of the childhood antecedents of osteoporosis, a condition that happens to manifest itself in elderly subjects. Available data suggest that the genetic susceptibility to osteoporosis may be detectable in early childhood (*Gilsanz and Wren, 2007*).

Measurement of bone mineral density (BMD) by dual – energy x-ray absorptiometry (DEXA) is viewed widely as the preferred method for clinical use in children because of its speed, precision, safety, and wide spread availability. The

radiation exposure is comparable to that received during a round trip transcontinental airplane flight (Bachrach, 2005).

DEXA is an attractive option for clinical use that gives estimates of bone mineral mass, fat free mass (FFM), which is approximately equivalent to lean body mass (LBM), and total fat mass (TFM). DEXA exploits the fact that the energy dependency of the strength of interaction between X-rays and bone mineral differs from that for soft tissue. At low energies, bone dominates the attenuation process while, at higher energies, X-rays interact to about the same extent with bone and soft tissue (Sala et al., 2006).

The 3 main limitations of DEXA measurement in children are: (1) the current lack of a standardized pediatric normative database, (2) the lack of a meaningful clinical outcome measure related to DEXA values in children, and (3) inaccuracies resulting from growth -related variations in bone and body size and composition (Gilsanz and Wren, 2007).