العلاقة بين الكفاءة الوظيفية للأذين الأيسر والقدرة على بذل المجهود لمرضى اعتلال عضلة القلب التمددي

رسالة

توطئة للحصول على درجة الماجستير في أمراض القلب والأوعية الدموية

مقرم من

الطبیب/عصام محمد الأمیرمفتاح بكالوریوس الطب والجراحة

تحت إشراف

الدكتور/ أحمد ابراهيم نصار

أستاذ أمراض القلب والأوعية الدموية كلية الطب – جامعة عين شمس

الدكتور/ عادل جمال حسنين

أستاذ مساعد أمراض القلب والأوعية الدموية كلية الطب – جامعة عين شمس

الدكتور/ أيمن مرتضى عبد المطلب

مدرس أمراض القلب والأوعية الدموية كلية الطب — جامعة عين شمس كلية (الطب جامعة عين شمس

7.17

RELATIONSHIP BETWEEN LEFT ATRIAL FUNCTION AND EXERCISE CAPACITY IN PATIENTS WITH DILATED CARDIOMYOPATHY

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

By
Esam Mohamed El-Amir
M.B.B.CH.

Under the Supervision of

Dr / Ahmed Ibrahim Nassar, MD

Professor of Cardiology
Ain Shams University

Dr/ Adel Gamal Hassanen, MD

Assistant Professor of cardiology
Ain Shams University

Dr/ Ayman Mortada Abd-Al Mottaleb, MD

Lecturer of Cardiology Ain Shams University

Faculty of Medicine Ain Shams University 2012

First and Foremost thanks are to ALLAH, The compassionate and merciful, whose help is the main factor in accomplishing this work.

It is my pleasure to express my deepest thanks and gratitude to *Dr. Ahmed Ibrahim Massar, MD*, Professor of Cardiology, Ain Sams University for his great help and support, kind supervision and continuous encouragement. I am truly grateful for him.

I would like also to express my profound thanks and gratitude to **Dr. Adel Gamal Hassanen**, Assistant Professor of Cardiology, Ain Shams University for his constructive guidance, remarkable effort, and scientific assistance and whatever have been said, is little to express my respect and thanks to him.

I am truly indebted to *Dr. Ayman Mortada Abd-Al Mottaleb*, *MD*, Lecturer of Cardiology, Ain Shams University for his meticulous supervision, encouragement, unlimited assistance and guidance during this work.

Esam Mohamed El-Amir

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of the work	4
Review of Literature	
Left atrium	5
Heart failure	30
Exercise stress testing	49
Patients and methods	56
Results	66
Discussion	85
Summary	91
Conclusion and recommendations	94
References	97
Arabic Summary	

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Reference Limits and Partition Values for Atrial Dimensions and Volumes	22
Table (2):	Demographic characteristics of the three study groups	67
Table (3):	Distribution of risk factors and NYHA class in groups 2 and 3	68
Table (4):	Comparison between three study groups as regard left ventricular diastolic function indices	70
Table (5):	Comparison between three groups as regard left ventricular volumes, dimensions and systolic function	72
Table (6):	Comparison between three study groups as regard Left atrium volumes	73
Table (7):	Comparison between three study groups as regard LA function indices	75
Table (8):	Correlation between LA function indices and functional capacity in METS	77
Table (9):	Correlation between METS and LA volumes	79
Table (10):	Correlation between left ventricular diastolic function indices and METS	82

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	Dissection showing the interior of the left side of the heart	6
Figure (2):	Phasic left atrial activity	10
Figure (3):	Measurement of left atrial diameter (LAD) from M-mode, guided by a parasternal short axis image (upper right) at the level of the aortic valve	15
Figure (4):	Biplane LA volume measurement	17
Figure (5):	Measurement of left atrial volume from the biplane method of discs (modified Simpson's rule)	
Figure (6):	Measurement of left atrial volume from the area-length method using the apical four-chamber (A4C) and apical two-chamber (A2C) views at ventricular end-systole (maximum LA size)	20
Figure (7):	Two-dimensional guided M-mode echocardiogram of the left ventricle (LV) at the papillary muscle level	34
Figure (8):	Measurement of ventricular dimensions	35
Figure (9):	LV end-diastolic dimension (EDd) (A) and end-systolic dimension (ESd) (B)	36
Figure (10):	Two-dimensional measurements for volume calculations using biplane method of disks (modified Simpson's rule) in apical 4-chamber (A4C) and apical 2-chamber (A2C) views at end diastole (LV EDD) and at end systole (LV ESD)	37

LIST OF FIGURES (CONT...)

Fig. No.	Title	Page No.
Figure (11):	Demonstration of pulmonary vein waves	44
Figure (12):	Patterns of mitral annulus velocity as recorded by Doppler tissue imaging, with sampling of the septal side of the mitral annulus from the apical view	45
Figure (13):	Demonstrates no significant difference between the two patients groups regarding risk factors	68
Figure (14):	Demonstrates significant difference between the two patient groups regarding NYHA class.	69
Figure (15):	Demonstrates highly significant difference between the 3 groups regarding E and A wave velocities with pulsed wave Doppler	71
Figure (16):	Demonstrates highly significant difference between the 3 groups regarding E\A ratio	71
Figure (17):	Demonstrates significant difference between the 3 study groups regarding left atrium volumes	74
Figure (18):	Demonstrates significant difference between the 3 groups regarding total emptying fraction and active emptying fraction	76
Figure (19):	Demostrates highly significant positive correlation between left atrium total emptying fraction and functional capacity in METS.	78
Figure (20):	Demonstrates significant positive correlation between left atrium active emptying fraction and functional capacity in METS	78
Figure (21):	Demonstrates highly significant negative correlation between maximum left atrium volume and METS	80

LIST OF FIGURES (CONT...)

Fig. No.	Title	Page No.
Figure (22):	Demonstrates highly significant negative correlation between pre p wave left atrium volume and METS	80
Figure (23):	Demonstrates significant NEGATIVE correlation between functional capacity in METS and left atrium minimum volume (vol. min).	81
Figure (24):	Demonstrates highly significant NEGATIVE correlation between Ewave velocity and METS	82
Figure (25):	Demonstrates highly significant POSITIVE correlation between A wave velocity and METS	83
Figure (26):	Demonstrates highly significant NEGATIVE correlation between METS and E\A ratio	83
Figure (27):	Demonstrates significant positive correlation between DT and METS.	84

LIST OF ABBREVIATIONS

Abbrev.	Full term
2D	Two Dimensional
ABD	Automatic Border Detection
AEF	Active Emptying Fraction
AEV	Active Emptying Volume
AF	Atrial Fibrialtion
AR	Atrial Reverse \ Reversal
CAD	Coronary Artery Disease
CaO2	Arterial Oxygen Content
CHF	Congestive Heart Failure
CPET	Cardiopulmonary Exercise Testing
CvO2	Mixed Venous Oxygen Content
DCM	Dilated Cardiomyopathy
DD	Diastolic Dysfunction
DHF	Diastolic Heart Failure
DM	Diabetes Mellitus
DT	Deceleration Time
ECG	Electrocardiogram
EDD	End Diastolic Dimension
EDV	End Diastolic Volume
EF	Ejection Fraction
ESD	End Systolic Dimension
ESV	End Systolic Volume
FS	Fractional Shortening
HF	Heart Failure
HR	Heart Rate
HTN	Hypertension
IHD	Ischaemic Heart Disease
IVRT	IsoVolumetric Relaxation Time
LA	Left Atrium \ Atrial
LA V-max	Left Atrial Maximum Volume
LA V-min	Left Atrial Minimum Volume
LA Vp	Left Atrial Volume at peak of ECG P wave
LAEF	Left atrial Ejection Fraction

LIST OF ABBREVIATIONS (CONT...)

Abbrev.	Full term
LAFS	Laft Atrial Fractional Shortoning
LAFS	Left Atrial Fractional Shortening Left Ventricle \ Ventricular
LVEF	Left Ventricular Ejection fraction
LVH	Left Ventricular Hypertophy
MET	Metabolic Equivalent
ME I MI	Myocardial Infarction
MM	M-Mode
MRI	Magnetic Resonance Imaging
MV	Mitral Valve
NYHA	New York Heart Association
PEF	Passive Emptying Fraction
PEV	Passive Emptying Volume
PVO2	Peak Oxygen uptake
RV RV	Right Ventricle \ ventricular
S1	First heart sound
S2	Second heart sound
SV	Stroke Volume
TDE	Tissue Doppler Echocardiography
TEE	Transesphageal echocardiography
TEF	Total Emptying Fraction
TEV	Total Emptying Volume
TTE	Transthoracic Echocardiography
VO2	Oxygen uptake

INTRODUCTION

eft atrial function is of great importance in diastolic function of normal heart as well as in the diseased heart, LA serves not only as a reservoir for the collection and storage of blood during left ventricular systole but also as a contractile pump to augment late left ventricular filling. Thus the evaluation of LA function as well as left ventricular function in diseased hearts is very useful for clinical decision-making particularly in the presence of heart failure (Rossi et al., 2007).

Abnormalities of LA performance are clinically important and found in a wide variety of common clinical conditions such as AF, dilated cardiomyopathy (DCM), diastolic dysfunction (DD), and valvular heart disease (Stefanadis et al., 1998).

Left atrial function is associated with LV diastolic filling and cardiac output response to exercise. But the relation between LA function and exercise performance has not been adequately evaluated.

Previous studies have demonstrated that LV systolic function does not predict exercise capacity (*Rihal et al.*, 1994).

In contrast, other reports showed that LV DD was intimately related to functional status (*Davies et al.*, 1992).

Many studies have described the contribution of LA function to LV diastolic filling. The LA acts as a reservoir during LV systole, and maintains passive filling during early diastole and active pumping during late diastole (*Hoit and Gabel, 2000*).

In patients with LV dysfunction, the LA contribution to LV filling becomes more important. In the early stages of LV systolic dysfunction, early ventricular diastolic inflow is decreased, and consequently atrial passive emptying is decreased and atrial active pumping function in late diastole is increased. In this way, the LA reservoir, conduit, and pumping functions are reorganized and thus cardiac output is maintained. As HF progresses, LA function decreases as a result of increased afterload on the LA myocardium (*Prioli et al.*, 1998).

Although LV DD is known to reduce exercise capacity, it is often difficult to predict precise exercise capacity by evaluating diastolic filling because hemodynamic parameters measured at rest are influenced by age, heart rate, loading condition, and the properties of the LV and LA. LA function is closely related to LV diastolic filling, therefore, indices of LA function may predict exercise capacity in patients with LV dysfunction (*Kono et al.*, 1992).

In normal subjects, stroke volume increases as a result of increased heart rate and myocardial contractility

and as a result of increased LV diastolic volume by means of the Frank-Starling mechanism (Sullivan et al., 1991).

However, in patients with LV systolic dysfunction, maximal exercise cardiac output is primarily dependant on LV diastolic filling properties because of impaired myocardial contractility. Left ventricular diastolic filling is closely related to LV relaxation and elasticity and LA function (Spes et al., 1996).

There are several mechanisms that explain the relationship between exercise capacity and LA function. Left atrial function reflects LV diastolic filling and therefore predicts the cardiac output and SV response to exercise (Jikuhara et al., 1997).

In this study we will assess the relation between LA function and exercise capacity in idiopathic and ischaemic diated cardiomyopathy.

AIM OF THE WORK

he aim of this study was to investigate the relation between left atrial function and exercise capacity in dilated cardiomyopathy patients.