

PHOTOCHROMISM AND PHOTOCATALYTIC STUDIES OF SOME HYDRAZONES AND ITS COMPLEXES WITH SOME TRANSITION METALS

Thesis submitted By

Soad Abdelsalam Ali Ben Sasi

B.Sc. (Chemistry) 2005

To
CHEMISTRY DEPARTMENT
FACULTY OF SCIENCE
AIN-SHAMS UNIVERSITY
For
THE DEGREE
M.Sc. IN CHEMISTRY
(2011)

Thesis Advisors

Prof. Dr. M. S. A. Abdel-Mottaleb

Professor of Inorganic and Photochemistry Faculty of Science, Ain Shams University

Prof. Dr. Mohamed Abo- Aly

Professor of Inorganic and Photochemistry Faculty of Science, Ain Shams University

Dr. Mohamed Said Attia

Lecturer of inorganic and Photochemistry Faculty of Science, Ain Shams University

Approval Sheet

Name of candidate: Soad Abdelsalam Ali Ben Sasi

Degree: M.Sc. Degree in Chemistry

Thesis Title: PHOTOCHROMISM AND PHOTOCATALYTIC STUDIES OF SOME HYDRAONES AND ITS COMPLEXES WITH SOME TRANSITION METALS

This Thesis has been approved by:

- 1- Prof. Dr. M. S. A. Abdel-Mottaleb
- 2- Prof. Dr. Mohamed Abo- Aly
- 3- Dr. Mohamed Said Attia

Approval

Chairman of Chemistry Department

Prof. Dr. Maged Shafik Antonious

PHOTOCHROMISM AND PHOTOCATALYTIC STUDIES OF SOME HYDRAONES AND ITS COMPLEXES WITH SOME TRANSITION METALS

By

Soad Abdelsalam Ali Ben Sasi B.Sc. (Chemistry) 2005 Under the supervision of:

1- Prof. Dr. M. S. A. Abdel-Mottaleb

Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, Cairo, Egypt

2- Prof. Dr. M. Abu-Aly

Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, Cairo, Egypt

3- **Dr.** Mohamed Said Attia Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, Cairo, Egypt

ACKNOWLEDGMENT

I would like to thank Professor M.S.A. Abdel Mottaleb for offering me the opportunity to carry out this interesting research work under his kind supervision, guidance and for making use of his excellent facilities of nanophotochemistry and solarchemistry labs under his guidance. I am also indebted to professor. Abdel Mottaleb for suggesting the timely and interesting point of research, following up the progress of the research and reading the manuscript critically.

I would like to thank Professor Dr. Mohamed Abo-Aly (Professor of Inorganic and Photochemistry) Dr. Mohamed Said Attia (Lecturer of inorganic and Photochemistry for critical discussion and assistance.

CONTENTS

	Aim of the work	1
1	Chapter 1: Introduction	2
1.1	Definition of chromism	2
1.2	Types of chromism	2
1.2.1	Thermchromism	2
1.2.2	Photochromism	2 2 3 3
1.2.3	Chirochromism	3
1.2.3.1	Diastereoselective photochromism	4
1.2.4	Halochromism	5
1.2.5	Piezochromism	6
1.2.6	Tribochromism	6
1.2.7	Solvatochromism	7
1.2.8	Halosolvatochromism	7
1.2.9	Acidicchromism	8
1.2.10	Ionochromism	9
1.2.11	Electrochromism	9
1.3	Brief historical of photochromism	9
1.4	Definition of Photochromism_	12
1.5	One photon and two photon systems	14
1.6	Kinetics of photochromic compounds	17
1.7	Chemical processes involved in organic	20
	photochromism	
1.7.1	Cis-Trans (E/Z) isomerization	20
1.7.1.1	Photochromic biological receptore	21
1.7.1.2	AZO compounds	22
1.7.2	Pericyclic reactions	24
1.7.2.1	Electrocyclization reactions	24
1.7.2.1.1	Fulgides and Fulgimides	25
1.7.2.2	Cycloaddition reactions	27
1.7.3	Intramolecular hydrogen transfer	28
1.7.4	Intramolecular group transfer	28
1.7.5	Electron transfers (oxido-reduction)	29
1.7.6	Dissociation processes	29

1.8	Applications of photo chromism	29
1.8.1	General applications	29
1.8.2	Actinometry	30
1.8.3	Optical power-limiting substances	32
1.8.4	Photoresponsive materials	33
1.8.5	Photoswitchable biomaterials	35
1.9	Literature Review	37
	CHAPTER 2: Experimental Techniques	
	and Methods	
2.1	Materials and Reagents	43
2.1.1	Zinc chloride (ZnCl ₂)	43
2.1.2	Salicylaldehyde-p-hydr0xybenzoyl hydrazone	43
2.1.3	Buffer solutions	44
2.2	Instruments	44
2.2.1	UV-VIS Measurements	44
2.2.2	Photoillumination Setup	44
2.2.3	pH measurements	45
2.2.4	Emission Spectra	45
2.3	Preparations and General Procedures	45
2.3.2	Decolorisation Analysis	46
2.4	Methods of Data Analysis	46
2.5	Data Analysis and Handling	47
	CHAPTER 3: Results and Discussion	
3.1	Absorption and Fluorescence Spectra of Salicylaldehyde-p-hydroxy benzoyl hydrazone	48
3.1.1	Effect of pH of Solution	49
3.1.1.1	Absorption spectra	49
3.1.1.2	Fluorescence spectra	52
3.1.2	pK _a Determination	53
3.1.2.1	pK _a *Determination	57
3.1.3	Effect of Metal ion "Complexation"	60
3.1.3.1	Application of Job's Method	61

3.2	Photochromic Effect	63
3.2.1	Effect UV-VIS Irradiation at different pH values	63
3.2.1.1	In Absence of Metal ion	63
3.2.1.2	In Presence of Metal ion	70
3.2.2	Effect of UV irradiation at different pH values	75
3.2.2.1	In Absence of Metal ion	75
3.2.2.2	In Presence of Metal ion	80
3.2.3	Effect of VIS irradiation at pH 9	85
3.2.3.1	In Absence of Metal	85
3.2.3.2	In Presence of Metal	86
3.2.4	Dark reaction	87
3.3	MO Computation [MINDO/3]	88
	Summary and conclusions	96
	References	100

List of Figures

Kinetics of photochromic unimolecular.	17
Evolution of the absorbance at two wavelengths of a unimolecular photochromic system under continuous irradiation.	19
Photoinduced cyclic variation of a physical property in a photoresponsive system.	33
Transmittance variation at 750 nm of the photochromic solution vs. temperature	35
Schematic assembly of a photoreversible immunosensor electrode.	36
Schematic diagram of Salicylaldehyde-p-hydroxybenzoyl hydrazone.	43
Absorption spectra of 1x10 ⁻⁶ M Salicylaldehyde-phydroxy benzoyl hydrazone in DMSO.	48
Fluorescence spectrum of 1x10 ⁻⁶ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in DMSO.	49
Absorption spectrum of 1x10 ⁻⁶ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous solutions of different pH acidic media	50
Absorption spectrum of Salicylaldehyde-p- hydroxy benzoyl hydrazone in aqueous solutions of different pH basic media	50
Fluorescence spectrum of 1x10 ⁻⁶ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous solutions of different pH acidic media	52
	Evolution of the absorbance at two wavelengths of a unimolecular photochromic system under continuous irradiation. Photoinduced cyclic variation of a physical property in a photoresponsive system. Transmittance variation at 750 nm of the photochromic solution vs. temperature Schematic assembly of a photoreversible immunosensor electrode. Schematic diagram of Salicylaldehyde-phydroxybenzoyl hydrazone. Absorption spectra of 1x10 ⁻⁶ M Salicylaldehyde-phydroxy benzoyl hydrazone in DMSO. Fluorescence spectrum of 1x10 ⁻⁶ M Salicylaldehyde-phydroxy benzoyl hydrazone in DMSO. Absorption spectrum of 1x10 ⁻⁶ M Salicylaldehyde-phydroxy benzoyl hydrazone in aqueous solutions of different pH acidic media Absorption spectrum of Salicylaldehyde-phydroxy benzoyl hydrazone in aqueous solutions of different pH basic media Fluorescence spectrum of 1x10 ⁻⁶ M Salicylaldehyde-phydroxy benzoyl hydrazone in aqueous solutions of different pH basic media

3.6	Fluorescence spectrum of 1x10 ⁻⁶ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous solutions of different pH acidic media.	53
3.7	Absorption spectrum of $1x10^{-6}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone at pH = 10.6 and pH = 3.6	55
3.8	The Förster cycle for pK _a and pK _a *	59
3.9	The absorption spectra of $1x10^{-6}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in water (1) and $1x10^{-6}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in the presence of $1x10^{-6}$ M of Zn^{2+} in water (2).	60
3.10	Absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone and Zn^{2+} complex. Their sum of the total analytical concentrations is held constant.	62
3.11	Continuous variation of 1x10 ⁻⁴ M Salicylaldehyde-p-hydroxy benzoyl hydrazone and Zn ²⁺ complex.	62
3.12	Effect of UV-Vis light irradiation time on the absorption spectrum of 1x10 ⁻⁶ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in DMSO.	63
3.13	Effect of UV-Vis light irradiation time on the absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 3.	64
3.14	First order kinetic plot of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 3, $\lambda_{analytical}$ = 296 nm.	65

- 3.15 Effect of UV-Vis light irradiation time on the absorption spectrum of 1x10⁻⁴ M
 Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 7.
- 3.16 First order kinetic plot of $1x10^{-4}$ M 66 Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 7, $\lambda_{analytical}$ = 380 nm.
- 3.17 Effect of UV-Vis light irradiation time on the 67 absorption spectrum of 1×10^{-4} M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = **9**.
- 3.18 First order kinetic plot of $1x10^{-4}$ M 67 Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 9, $\lambda_{analytical}$ = 300 nm.
- 3.19 Effect of UV-Vis light irradiation time on the absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 10.
- 3.20 Effect of UV-Vis light irradiation time on the 69 absorption spectrum of 1x10⁻⁴ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 11.
- 3.21 First order kinetic plot of $1x10^{-4}$ M 69 Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 11, $\lambda_{analytical}$ = 298 nm.
- 3.22 Effect of UV-Vis light irradiation time on the absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn²⁺ in aqueous medium of pH = 3.

3.23	First order kinetic plots of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 3, a: $\lambda_{analytical} = 296$ nm b: $\lambda_{analytical} = 324$ nm.	70
3.24	Effect of UV-Vis light irradiation time on the absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 7.	71
3.25	First order kinetic plot of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 7, $\lambda_{analytical}$ = 380 nm.	71
3.26	Effect of UV-Vis light irradiation time on the absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 9.	72
3.27	First order kinetic plot of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 9, $\lambda_{analytical}$ = 336 nm.	72
3.28	Effect of UV-Vis light irradiation time on the absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 10.	73
3.29	Effect of UV-Vis light irradiation time on the absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 11.	74

3.30	First order kinetic plot of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 11, $\lambda_{analytical}$ = 296 nm.	74
3.31	Effect of UV light irradiation time on the absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 3.	75
3.32	First order kinetic plots of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 3, a: $\lambda_{analytical} = 296$ nm b: $\lambda_{analytical} = 324$ nm.	75
3.33	Effect of UV light irradiation time on the absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 7.	76
3.34	First order kinetic plot of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 7, $\lambda_{analytical}$ = 380 nm.	76
3.35	Effect of UV light irradiation time on the absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 9.	77
3.36	First order kinetic plot of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 9, $\lambda_{analytical}$ = 380 nm.	77
3.37	Effect of UV light irradiation time on the absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 10.	78

- 3.38 First order kinetic plot of $1x10^{-4}$ M 78 Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 10, $\lambda_{analytical}$ = 290 nm.
- 3.39 Effect of UV light irradiation time on the 79 absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 11.
- 3.40 First order kinetic plot of $1x10^{-4}$ M 79 Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 11, $\lambda_{analytical}$ = 298 nm
- 3.41 Effect of UV light irradiation time on the 80 absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 3.
- 3.42 First order kinetic plot of 1×10^{-4} M 80 Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of 1×10^{-4} M Zn^{2+} in aqueous medium of pH = 3, $\lambda_{analytical} = 296$ nm.
- 3.43 Effect of UV light irradiation time on the 81 absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 7.
- 3.44 First order kinetic plot of 1×10^{-4} M 81 Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of 1×10^{-4} M 2×10^{-4} in aqueous medium of pH = 7, $\lambda_{analytical} = 285$ nm.
- 3.45 Effect of UV light irradiation time on the 82 absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 9.

- 3.46 First order kinetic plot of $1x10^{-4}$ M 82 Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 9, $\lambda_{analytical}$ = 380 nm.
- 3.47 Effect of UV light irradiation time on the 83 absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn²⁺ in aqueous medium of pH = 10.
- 3.48 First order kinetic plot of $1x10^{-4}$ M 83 Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 10, $\lambda_{analytical}$ = 290 nm.
- 3.49 Effect of UV light irradiation time on the 84 absorption spectrum of $1x10^{-4}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 11.
- 3.50 First order kinetic plot of $1x10^{-4}$ M 84 Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $1x10^{-4}$ M Zn^{2+} in aqueous medium of pH = 11, $\lambda_{analytical}$ = 298 nm.
- 3.51 Effect of VIS light irradiation time on the 85 absorption spectrum of $5x10^{-5}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 9.
- 3.52 First order kinetic plots of $5x10^{-5}$ M 85 Salicylaldehyde-p-hydroxy benzoyl hydrazone in aqueous medium of pH = 9, a: $\lambda_{analytical} = 308$ nm b: $\lambda_{analytical} = 380$ nm
- 3.53 Effect of VIS light irradiation time on the 86 absorption spectrum of $5x10^{-5}$ M Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $5x10^{-5}$ M Zn²⁺ in aqueous medium of pH = 9.

- 3.54 First order kinetic plots of $5x10^{-5}$ M 86 Salicylaldehyde-p-hydroxy benzoyl hydrazone in presence of $5x10^{-5}$ M Zn^{2+} in aqueous medium of pH = 9, a: $\lambda_{analytical} = 298$ nm b: $\lambda_{analytical} = 360$ nm
- 3.55 Dark reaction of the Salicylaldehyde-p-hydroxy 87 benzoyl hydrazone in aqueous medium of pH = 9.
- 3.56 First order kinetic plot of Salicylaldehyde-p- 88 hydroxy benzoyl hydrazone in aqueous medium of pH = 9 in dark reaction, $\lambda_{analytical} = 364$ nm.
- 3.57 Structure of the keto and enol forms of 89 salicylaldehyde-p-hydroxy benzoyl hydrazone.