Diagnostic Value of Bronchoalveolar Lavage and level of Nuclear Factor-Kappa B in Acute Lung Injury in Critically III Children

Chesis

Submitted for partial fulfillment of Master degree in Pediatrics

Presented by

Naema Abd Al Rahman Mohammed ALi

M.B.B.CH (2004) Faculty of Medicine, Zagazig University

Under Supervision of

Prof. Dr. Mahmoud Tarek Abd Al Monem

Professor of Pediatrics Faculty of Medicine – Ain Shams University

Prof. Dr. Yasser Ahmed Zeitoun

Professor of Clinical Pathology Faculty of Medicine – Ain Shams University

Dr. Terez Boshra Kamel

Lecture of Pediatrics Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2012

دراسة القيمة التشخيصية للعامل النووى كابا بى فى الغسيل الشعبى الحويصلى وعلاقته بمتلازمة الاصابة الحادة للرئة بمرضى الأطفال ذوى الحالات الحرجة

رسالة

توطئة للحصول على درجة الماجستير في طب الأطفال

مقدمة من

الطبيبة / نعيمة عبد الرحمن محمد على بكالوريوس الطب والجراحة - جامعة الزقازيق (٢٠٠٤)

تحت اشراف

أ.د/ محمود طارق عبد المنعم

أستاذ طب الأطفال كلية الطب- جامعة عين شمس

أ. د/ ياسر أحمد زيتون

أستاذ الباثولوجيا الاكلينيكية كلية الطب- جامعة عين شمس

د/ تریـز بشـری کامـل

مدرس طب الأطفال كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٢

Summary and Conclusion

The present study aimed at estimation of NK-B level in broncho-alveolar fluid using fiber-optic bronchoscope (FOB) in critically ill pediatric patients with ALI and evaluation of its diagnostic value.

The current study included 20 critically ill pediatric patients on mechanical ventilation, with ALI, admitted to Ain Shams PICU. It included 20 non –ALI mechanically ventilated children as control group.

Patients with past history of chronic pulmonary disorder, patients with cardiac lesion, COPD and sarciodosis were excluded from the present study. All patients underwent full clinical examination, chest AP view X-ray, laboratory investigation including; complete blood count, CRP, and arterial blood gases.

Broncho-alveolar lavage by fiber-optic bronchoscope was used to study NK-B level in BAL in ALI patients and mechanically ventilated control group (non ALI- group). NK-B was assayed in BAL by ELISA.

ALI affects males (70 %) more than females (30 %) and the difference is not significant and bronchopneumonia is the most common cause as a direct injury to the lungs (40%). Moreover NK-B level in broncho-alveolar lavage of patients was highly significant elevated (Mean = 0.58 ug/ug nuclear

List of Contents

	Page No.
List of tables	i
List of figures	iii
List of abbreviations	vi
Introduction	1
Aim of the work	3
Review of Literature	
- Acute Lung Injury and the Acute Respiratory Distre	
- Structure and Regulation of NF-κB	44
Patients and Methods	64
Results	74
Discussion	101
Recommendations	112
Summary and Conclusion	113
References	115
Arabic summary	

List of Tables

Cable No.	Citle	Page No.
Table (1):	The American–European Consensus Conferendefinition	
Table (2):	Clinical disorders associated with t development of ARDS accourding to occurance	he 29
Table (3):	Causes of Acute Lung Injury	9
Table (4):	Clinical Presentation and Pathological Chang during Acute Respiratory Distress Syndrome.	
Table (5) :	Therapeutic strategies in ARDS	22
Table (6):	Hypoxemic score (PaO2/FIO2)	66
Table (7):	The acute lung injury Score (ALIS)	67
Table (8):	The demographic data of ALI group (n= 20)	74
Table (9):	The demographic data of Non ALI group	74
Table (10):	Clinical data among ALI -group	75
Table (11):	Clinical data among non ALI group	75
Table (12):	The routine laboratory investigation of ALI at Non ALI groups	
Table (13):	Diagnosis of studied patients (ALI-group)	78
Table (14):	Diagnosis of studied controls (Non ALI- grou	p)79
Table (15):	The ventilatory settings in ALI-group and No ALI- group	
Table (16):	Blood gases in ALI-group and Non ALI- grou	ıp80
Table (17):	The ALI score in ALI- group	80
Table (18):	NK-B in BALF in ALI-group and Non Al group	
Table (19): C	comparison between ALI group and Non ALI regards (age, Crowding index, Body maindex)	ISS

Table (20):	Comparison between ALI group and Non ALI according to (sex, residence, Passive Smoking history)	83
Table (21):	Comparison between ALI group and Non ALI as regards the common predispoising factors for lung injury	86
Table (22):	Comparison between ALI- group and non ALI- group as regards duration of mechanical ventilation	88
Table (23):	Comparison between ALI group and Non ALI group as regards the routine laboratory investigation	88
Table (24):	Comparison between ALI-group and Non ALI-group as regards the ventilatory settings	90
Table (25):	Comparison between ALI-group and Non ALI-group as regards Blood gases	92
T able (26):	Comparison between patients and control as regard NK-B in BALF	94
Table (27):	Correlation coefficient between NK-B and all studied parameters	95

List of Figures

Figure V	lo. Eitle	Page	No.
Fig. (1):	Lung autopsy specimen showing the exudati stage of acute respiratory distress syndrome		11
Fig. (2):	Lung biopsy specimen revealing overlapping the fibroproliferative stage and the exudative stage		11
Fig. (3):	Diffuse Alveolar Damage, Exudative phase Alveolar ducts appears dilated		12
Fig. (4):	Proliferative phase		13
Fig. (5):	Mechanisms Important in the Resolution of Acu Lung Injury and the Acute Respiratory Distre Syndrome	ess	16
Fig. (6):	Frontal chest radiograph showing bilateral luinfilterates	_	20
Fig. (7):	Radiographic and Computed Tomographic (CT).		21
Fig. (8):	The effects of alveolar–capillary leak and positi end-expiratory pressure (PEEP) on pulmonary g exchange	as	25
Fig. (9):	Sepsis-induced acute respiratory distresyndrome		42
Fig. (10):	Schematic overview of the Rel/NF-κB family transcriptional activators		45
Fig. (11):	Overview of NF-κB regulation pathway		50
Fig. (12):	TNFR signaling pathway		52
Fig. (13):	Toll/IL-l signaling pathway		54
Fig. (14):	Flexible fiberoptic bronchoscope		70
Fig. (15):	Flexible bronchoscopy set.		70
Fig. (16):	The double way adaptor used to keep the patie connected to ventilator during bronchoscopy		71
Fig. (17):	Examples of chest radiographs done for studi patients.		76

Fig. (18):	Radiographic and Computed Tomographic (CT) of Acute Lung Injury	77
Fig. (19):	Bronchoscopic view of a) multiple nodular involvement of the right main bronchi, b) Narrowing of the intermeditory labor bronchi	77
Fig. (20):	Diagnosis of studied ALI- group.	
Fig. (21):	Diagnosis of studied non ALI- group.	
Fig. (22):	ALI score in ALI-group	81
Fig. (23):	Age distribution of ALI-group and controls non ALI-group.	83
Fig. (24):	Gender distribution of ALI-group and non ALI-group	84
Fig. (25):	Passive smoking history distribution of ALI-group and non ALI-group	84
Fig. (26):	Residence distribution of ALI-group and non ALI-group	85
Fig. (27):	Central line distribution of ALI-group and non ALI-group.	87
Fig. (28):	Ryle feeding distribution of ALI-group and non ALI-group.	87
Fig. (29):	Laboratory investigation of ALI-group and non ALI-group.	89
Fig. (30):	The ventilatory settings laboratory investigation of ALI-group and non ALI-group.	91
Fig. (31):	The blood gases investigation of ALI-group and non ALI-group	93
Fig. (32):	Comparison between ALI-group and non ALI-group as regard NK-B in BALF.	94
Fig. (33):	Correlation coefficient between PEEP and BALF NK-B	96
Fig. (34):	Correlation coefficient between PaO2 and BALF NK-B	
Fig (35):	Correlation coefficient between IT and BALF NK- B	

Fig. (36): Correlation coefficient between crowding index and BALF NK- B	97
Fig. (37): Correlation coefficient between Platelet and BALF NK-B	98
Fig. (38): Correlation coefficient between Passive smoking history and BALF NK-B	98
Fig. (39): Correlation coefficient between CRP and BALF NK-B	99
Fig. (40): ROC curve of NK-B	

List of Abbreviations

AIDS : Acquired Immunodeficiency Virus Syndrome

a.a : Amino Acids

ALI : Acute lung injury

ALIS : Acute lung injury score

AP : Anteroposterior

ARDS : Adutl (Acute) Respiratory distress syndrome

AP-1 : Activator Protein-1

ACM : Alveolar capillary membrane

AECC: American- European Consensus Committee

APRV : Airway Pressure Release Ventilation

ARF : Acute Respiratory failure
BAL : Bronchoalveolar lavage
BiPAP : Biphasic Airway Pressure
CT : Computerized tomography

CPAP : Continous Positive Airway Pressure

CBP : CREP Binding Protein

CREB : cAMP-Responsive Element-Binding Protein

CTD : C-Terminal DomainDAD : Diffuse alveolar damageDNA : Deoxyribonucleic Acid

ECCO2 : Extracorporeal Carbon dioxide removal
 ECMO : Extracorporeal Membrane Oxygenation
 ELISA : Enzyme –linked Immunosorbent Assay

EPCS : Endothelial Progenitor Cells
Fio2 : Fraction of inspired oxygen
FRC : Function Residual Capacity
FOB : Fiberoptic bronchoscope

HFOV: High- Frequency Oscillatory Ventilation

HFV : High – Frequency VentilationHIF : Hypoxia- induced Factor

HLH: Helix-Loop-Helix

ΙκΒ : Inhibitor-Kappa B

IBD : Inflammatory Bowel DiseaseICAM : Intracellular Adhesion Molecule

IFNγ : Interferon GammaIg : Immunoglobulin

IKK: Inhibitor-Kappa-B Kinase

I:E ratio : Inspiratory to Expiratory time ratio

ICU : Intensive Care Unit

IL : Interleukin

INO : Inhaled Nitric OxideIRV : Inverse Ratio Ventilation

iNOS : Inducible Nitric Oxide Synthase

IRAK : Interleukin-1 Receptor Associated Kinase

IRF : IFN Regulatory Factor

KD : Kinase Domain

LPS: Lipopolysaccharides

LBP : Lipopolysaccharide –Binding Protein

LIS : Lung Injury Score

LZD : Leucine Zipper Domain

MAPMacrophage Activating ProteinMAPKMitogen Activated Protein KinaseMEKKMAPK Extracellular Kinase Kinase

MV : Mechanical ventilation

NAECC : North American- European Consensus Committee

NO : Nitric Oxide

NEMO : NFκB Essential MoleculeNF-κB : Nuclear Factor-Kappa B

NF-AT : Nuclear Factor of Activated T Cell

NIK : NF-κB Inducing Kinase

PaCO2 : Partial pressure of arterial carbon dioxide

PaO2 : Partial pressure of oxygen

PEEP : Positive end expiratory pressure

PEEPi : Intrinsic PEEP
PFC : Perfluorocarbon

PC-PLC: Phosphatidylcholine – Specific Phospholipase C

PICU : Pediatric Intensive Care UnitPIP : Peak Inspiratory PressurePLV : Partial Liquid Ventilation

PAMPs: Pathogen-Associated Microbial Patterns

PKA: Protein Kinase A

RHD : Rel Homology DomainRIP : Receptor Interacting ProteinRSV : Respiratory Syncytial Virus

SARS : Severe Acute Respiratory Syndrome

SD : Standard Deviation

SODD : Silence of Death Domain

TAB : TAK-Associated Binding Protein

TAD : Transactivating Domain

TAK: Transforming Growth Factor B Activated Kinase 1

TCR : T-Cell Receptor

TIR : Toll/ IL-1 Receptor/ Resistance

Tk: Tyrosine Kinase

TRALI: Transfusion – Related Acute Lung Injury

TLR : Toll-Like Receptor

TNF: Tumour Necrosis Factor

TNFR: Tumour Necrosis Factor ReceptorTRADD: TNFR-Associated Death Domain

TRAF2 : TNFR Associated FactorUSA : United States of America

V/Q ratio : Ratio of alveolar ventilation to pulmonary capillary blood flow

VT : Tidal Volume

Introduction

Acute lung injury (ALI) is a clinical syndrome that describes a single common end point; severe injury to the alveolar capillary membrane and the development of protinacious edema (Suratt et al., 2006).

Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury that results from inflammation causing major changes in lung architecture and functions (*Timmons et al.*, 2006).

Incidence of acute lung injury (ALI) in ventilated patients reach up to 16.1%, more than half of these patients may develop ARDS. Observational studies report 50 - 60% mortality (*Brun-Busson et al., 2004*).

Acute lung injury (ALI) is most often seen as part of systemic inflammatory process particularly systemic sepsis where the lung manifestations parallel to those of other tissues. Widespread destruction of the capillary endothelium, extravasations of protein rich fluid and interstitial edema, with subsequent alveolar basement membrane damage. Hence inflammatory cells and fluid sweep into the airspaces, stiffening the lungs and causing ventilation-perfusion mismatch (*Ware et al., 2000*).

NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein complex that controls the

transcription of DNA. NF-κB is found in almost all animal cell types and is involved in cellular responses to stimuli such as stress, cytokines, free radicals, ultraviolet irradiation and bacterial or viral antigens. NF-κB plays a key role in regulating the immune response to infection. Conversely, incorrect regulation of NF-κB has been linked to cancer, inflammatory and autoimmune diseases, septic shock, viral infection (*Tian et al., 2003*).

Bronchoalveolar lavage (BAL) is the collection of airway linning fluid through fiberoptic bronchoscopy and has been regarded as the "Liquid biopsy" of the lung (*Flori et al.*, 2003).

Fiberoptic bronchoscopy is the producedure of choice to obtain uncontaminated bronchoalveolar lavage fluid. The technique is safe, minimally invasive and reveals sepcific information to the extent that it can even replace lung biopsy (*Luh and Chiang*, 2007).

Aim of the work

The aim of this work is to study the diagnostic value of Nuclear Factor-Kappa B level in BAL fluid by fiberoptic bronchoscope in children with acute lung injury.