ROLE OF GLYPICAN-3 IN DIAGNOSIS OF HEPATOCELLULAR CARCINOMA

Thesis

Submitted for Fulfillment of the Master's Degree in Tropical Medicine

By

Ismail Mohamed Abdulsamea *M.B.,B.Ch.*

Supervised by

Professor Doctor/ Zakaria Yehia Mahran

Professor of Tropical Medicine Department Faculty of Medicine - Ain Shams University

Doctor/ Amal Tohamy Abdel-Moez

Assistant Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Doctor/ Mona Ahmed Ismail

Assistant Professor of Clinical Pathology Faculty of medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2012

دور الجليبيكان ـ٣ فــى تشخيــص سرطـان الكبــد الأولــي

رسالة

توطئت للحصول على درجت الماجيستير في طب المناطق أكارة

مقرمة من (الطبيب

اسماعيل محمد عبد السميع

بكالوريوس الطب والجراحة

تحت (اشراف

أستاذ دكتور/ زكريا يحي مهران

أستاذ طب الناطق الحارة

كلية الطب — جامعة عين شمس

دكتورة / أمال تهامي عبدالمعز

أستاذ مساعد طب المناطق الحارة

كلية الطب —جامعة عين شمس

دكتورة / منى أحمد اسماعيل

أستاذ مساعد الباثولوجيا الإكلينيكية

كلية الطب – جامعة عين شمس

كليــة الطــب جامعــة عين شمــس ٧٠٠٧

SUMMARY

epatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer-related mortality after lung and stomach cancers (*Al Knawy et al.*, 2009). In Egypt, the annual proportion of HCC showed a significant rising trend from 4.0% in 1993 to 7.2% in 2002 (*El-Zayadi et al.*, 2005).

The aim of this study was to evaluate the diagnostic value of Glypican 3 as a tumor marker of HCC.

This study was conducted on 90 persons who were divided into three groups:

Group I (HCC group); included 30 patients with HCC on the background of liver cirrhosis. Thire ages ranged between 47-65year (median=54.00).

Group II (chronic liver disease group); included 30 patients with chronic liver disease without any evidence of hepatic focal lesions as excluded by ultrasonography and AFP estimation. Diagnosis of chronic liver disease was based on standard clinical, biochemical, ultrasonographic criteria and pathological data whenever feasible. Thire ages ranged between 45-61 years (median=51.50).

Group III included 30 normal subjects who served as the control group.

First and foremost, thanks for **ALLAH** for guiding and helping me to finish this work

I would like to express my deepest thanks and sincere gratitude to **Prof. Zakaria Yehia Mahran**, Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his close supervision valuable instructions, continuous help and sincere advice.

Words stand short to express my deep appreciation and sincere gratitude to **Dr.**: Amal Tohamy Abdel-Moez, Assistant Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for her continuous guidance, kind encouragement and pioneer advices that put me on the right way. It was a great honor to me to work under her supervision.

I wish to introduce my deep respect and thanks to **Dr. Mona**Ahmed Ismail, Assistant Professor of Clinical Pathology
Faculty of Medicine, Ain Shams University, for her valuable supervision, sincere advice and her immense effort in the practical part of this study.

I am much grateful to all my colleagues in Tropical Department and UCC clinic for their co-operation and support and also to all patients included in this study.

Smail Mohamed Abdulsamea

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Protocol	vi
Introduction and Aim of the Work.	1
Review of literature (Hepatocellular	Carcinoma)
• Chapter I: Hepatocelllular Carcinoma	6
• Chapter II: Management of Hepatoce	IllularCarcinoma31
• Chapter III: Treatment of HCC	57
• Chapter VI: Glypican 3	76
Subjects and Methods	89
Results	99
Discussion	122
Summary	132
Conclusion and Recommendations.	134
References	136
Arabic Summary	

List of Tables

Table No.	Title Page No	۶.
Table I:	Tables of Review Epidemiology of HCC	7
Table II:	Groups for whom HCC surveillance in recommended or in whom the risk of HCC is increased	
Table III: Table IV:	TNM stage grouping New UICC/ AJCC staging system for hepatocellular	
Table V:	carcinomaOkuda Staging Variables	36 37
Table VI: Table VII:	Child_Pugh Score	38
Table VIII: Table IX:	Japan Integrated Staging Score. Liver damage grade	40
Table X: Table XI:	Modified Japan Integrated Staging	41
Table XII: Table XIII:	BCLC Staging System Currently used Serum Tumor Markers Causes andRisk factors for HCC and General	49
	Approaches to prevention	74
Table AIV.	Tables of Results	13
Table 1:	Comparison between studied groups	99
Table 2:	Comparison between CLD group versus HCC group as regard utrasongraphic data and child classification	102
Table 3:	Comparison between CLD group versus HCC group as regards laboratory data	
Table 4: Table 5:	Number and size of hepatic focal leision in HCC group Comparison between Control group versus CLD,HCC	
Table 6:	groups as regards glypican-3	
Table 7:	CLD patients as regards glypican-3	
Table 8:	HCC patients as regards glypican-3 Study of Glypican-3 in respect to Okuda classification	
Table 9:	in HCC Group	111
Table 10:	parameters in CLD and HCC groups	
Table 11:	parameters in CLD and HCC groups	
Table 12:	in CLD and HCC groups	114
	r	

List of Figures

Figure M	v. Title	Page No.
	List of Figures in Review	
Figure (I)	Molecular pathogenesis of human HCC	23
Figure(II)	Barcelona Clinic Liver Cancer (BCLC) stateatment algorithm	
Figure(III)	Algorithm for management of HCC	59
Figure(IV)	A suggested Egyptian algorithm for treatme according to BCLC staging	
	List of Figures (Results)	
Figure (1)	ROC curve: the relation between sensitive specificity for Glypican-3 as a marker to distribute the control subjects and patients with cut-off point = 0.96)	iscriminate 1 LC (best
Figure (2)	ROC curve: the relation between sensitive specificity for Glypican-3 as a marker to dispetween control subjects and patients with cut-off point = 0.96)	iscriminate HCC (best
Figure (3)	ROC curve: the relation between sensitive specificity for Glypican-3 as a marker to distribute between patients with LC and patients with cut-off point = 2.55)	iscriminate HCC (best
Figure (4)	Flowcytometric analysis of HCC patient	120
Figure (5)	Flowcytometric analysis of HCV patient	120
Figure (6)	Flowcytometric analysis of Control	121

List of Abbreviations

AASLD	American Association for the study of the liver disease
AFB1	Aflatoxin B1
AFP	Alpha-fetoprotein
AFP L3	Lens culinaris agglutinin reactive alpha fetoprotein
A FU	Alpha-L-fucosidase
ANGs	Anghoproteins
ALP	Alkaline phosphatase
ALT	Alanine transaminase
Bax	Bcl-2 associated
BCLC	System The Barcelona-Clinic- Liver-Cancer system
BCS	Budd-Chiari syndrome
CECT	Contrast enhanced helical computed tomography
CEUS	Contrast enhanced ultrasound
CLD	Chronic liver disease
CLIP	The Cancer of the Liver Italian Program
CT	Computed tomography
CTAP	CT arterial portography
CTHA	CT during hepatic arteriography
CUPI	Chinese University Prognostic Index
DCP	Des-gamma carboxyprothrombin
DGCP	Des-γ-carboxyprothrombin
DNA	Dinucleic acid
EASL	European association for the study of the liver
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
FDA	Food and Drug Administration
FNAB	Fine needle aspiration biopsy
5-FU	5-fluorouracil
GCV	Ganciclovir
GGT	Gamma-glutamyltranspeptidase
GP73	
GPC3	~ -
G6P	

Tist of Abbreviations (Cont...) HCC Specific Alkaline Phosphatase H-ALP..... Hepatitis B virus HBV HCC..... Hepatocellular carcinoma Hepatitis C virus HCV HFL Hepatic focal lesion HGF..... Hepatocyte growth factor HS-GGT..... Hepatoma-specific GGT HSP..... Heat shock protein HSV..... Herpes Simplex virus Herpes simplex virus thymidine kinase HSV-tk Human telomerase reverse transcriptase hTERT..... HTN..... Hypertension ICGR Indocyanine Green retention rate Indocyanine Green retention rate at 15 minutes ICG R15(%).. IGF..... Insulin like growth factor ILP..... Interstitial laser photocoagulation Interleukin-8 IL-8..... International normalized ratio INR IVC Inferior vena cava The Japan Integrated Staging score JISScore..... LCA..... Lens culinaris agglutinin LCSGJ..... The Liver Cancer Study Group of Japan LDH..... Lactate dehydrogenase Laser induced thermotherapy LITT LT Liver Transplantation MCT Microwave Coagulation Therapy MDCT Multidetector helical CT MELD The Model for End Stage Liver Disease

Parenteral anti-schistosomal treatment

Peripheral blood mononuclear cells

Multiphasic helical CT

Magnetic resonance imaging

Nonalcoholic steatohepatitis

MOVC..... MPCT.....

MRI

NASH.....

PAT PBMCs..... Membranous obstruction of the inferior vena cava

Tist of Abbreviations (Cont...)

PCT..... Porphyria cutaneatarda PDGFR..... Platelet derived growth factor receptor PEI..... Percutaneous ethanol injection Percutaneous ethanol injection treatment PEIT..... Protein induced by vitamin K absence or antagonist II PIVKA-II PMCT..... Percutaneous Microwave Coagulation PS..... The performance status score PSC..... Primary sclerosing Cholangitis PSI Percutaneous hot saline injection PUO..... Pyrexia of unknown origin PVE Portal vein embolism PVT Portal vein thrombosis RCT Randomized Controlled Trial RFA Radiofrequency ablation RILD..... Radiation induced liver disease ROC..... The receiver operating characteristic curve RT-PCR..... Reverse transcription polymerase chain reaction SCCA Serum squamous cell carcinoma antigen Serum squamous cell carcinoma antigen SCCAIC..... immunocomplexes SD..... **Standard Deviation** SELDI-TOF.. Surface-enhanced laser desorption/ionization-time of flight mass spectrometry sGPC3 soluble Glypican-3 SIRT Selective internal radiation therapy TACE Transarterial chemoembolization TGF-α..... Transforming growth factor-α TGF-β1..... Transforming Growth Factor-beta 1 TNM Staging System.... Tumor, Node and Metastases Staging System UNOS..... United Network of Organ Sharing US..... Ultrasonography VEGF Vascular endothelial growth factor

World Health Organization

WHO

ROLE OF GLYPICAN-3 IN DIAGNOSIS OF HEPATOCELLULAR CARCINOMA

Protocol

Submitted for Fulfillment of the Master's Degree in Tropical Medicine

By

Ismail Mohamed Abdulsamea *M.B.,B.Ch.*

Supervised by

ProfessorDoctor/ZakariaYehiaMahran

Professor of Tropical Medicine Department Faculty of Medicine - Ain Shams University

Doctor/Amal Tohamy Abdel-Moez

Lecturer of Tropical Medicine Faculty of Medicine - Ain Shams University

Doctor/ Mona Ahmed Ismail

Assistant Professor of Clinical Pathology Faculty of medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Introduction

Hepatocellularcarcinoma is a major health problem worldwide, with more than 500000 cases diagnosed annually (*Parkin et al., 2001*). HCC is the fifth most frequent tumor in the world (*Anthony, 2001*), and the most common cause of cancer related death (*Parkin et al., 2001*). While the incidence of Hepatocellular carcinoma has reportedly risen over the last5 to 8 years, the survival of those affected has not changed significantly in the last two decades (*Bosch et al., 2004*). This is related to both its late detection and the lake of effective therapies for advanced stage disease (*Bruix & Lovet, 2002*).

Rising Prevalence in Egypt within the last two decades, this is related to both, it is late detection and lack of effective therapies for advanced stage disease. Several factors attribute the high prevalence of Hepatocellular carcinoma including cirrhosis, hepatitis C virus and hepatitis B virus. Up to 80% of Hepatocellular carcinoma develop against a background of cirrhosis of the liver and while it is believed that surveillance of the at risk cirrhotic population could aid earlier detection of the disease and decrease the cancer related mortality rate, our present success is limited by lack of sensitive biomarker (*Bruix & Lliovet*, 2002).

Currently standard surveillance includes a combination of 6 monthly abdominal ultrasound scan and serum alphafetoprotein measurement, but this strategy does not reliably detect early disease. The diagnostic performance of alphafetoprotein is inadequate (*Sherman. 2001*) as it is only elevated in 40-60% of cases, while abdominal ultrasonography is difficult in cirrhotic nodular livers and notoriously user dependant (*Bruix et al., 2001*).

The oncofetal antigen glypican-3(GPC-3) is a heparan sulfate proteoglycans that is expressed more than 70% of Hepatocellular carcinoma (*Capuro et al 2005*).

When combind with AFP it has sensitivity of up to 82% for HCC detection on a background of viral hepatitis (*Capurro et al.*, 2005). Measurement of (GPC3) may be of help in the early detection of Hepatocellular carcinoma (*Beale et al*, 2008).

Glypican-3is a member of the glypican family of heparin sulfate proteoglycans, which are linked to the cell surface through a glycosylphosphatidylinositol anchor (*Filmus*,2001). GPC3 has been reported to be expressed in the majority (more than 70%) of Hepatocellular carcinoma as a diagnostic marker (*Jia et al.*, 2007).

Aim of the Work

The aim of the present study is:

To evaluate the diagnostic value of glypican-3 (GPC3) in serum for primary hepatocellular carcinoma (HCC).