- 1- English cover.pdf
- 2- Abstract.pdf
- 3- Acknowledgement.pdf
- 4- Table of contents.pdf
- 5- Introduction.pdf
- 6- Review of literature.pdf
- 7- Materials and methods.pdf
- 8- Results and discussion.pdf
- 9- Summary and conclusion.pdf
- 10- References.pdf
- 11- Arabic Summary.pdf
- 12- Arabic cover.pdf

COMPARATIVE STUDY OF USING PROBIOTIC AND PREBIOTIC IN FEEDING BROILER CHICKS REARED IN CAGES

By

FAYZA MOHAMED MANSOUR SALEM

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 1997M.Sc. Agric. Sc. (Poultry Nutrition), Ain Shams University, 2005

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Poultry Nutrition)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

COMPARATIVE STUDY OF USING PROBIOTIC AND PREBIOTIC IN FEEDING BROILER CHICKS REARED IN CAGES

By

FAYZA MOHAMED MANSOUR SALEM

B.Sc. Agric. Sc. (Poultry Production), Faculty of Agriculture, Ain Shams University, 1997M.Sc. Agric. Sc. (Poultry Nutrition), Faculty of Agriculture, Ain Shams University, 2005

The thesis for Ph.D degree has been approved by:

Date of Examination: 11 /07 / 2012

Dr. Abdallah Ali Ghazalah Prof. of Poultry Nutrition, Faculty of Agriculture, Cairo University Dr. Hussein Abdallah El-Alaily Prof. of Poultry Nutrition, Faculty of Agriculture, Ain Shams University Dr. Alla Eldin Abdel Salam Hemid Prof. of Poultry Nutrition, Faculty of Agriculture, Ain Shams University Dr. Nabil Mohamed El-Medany Prof. of Poultry Nutrition, Faculty of Agriculture, Ain Shams University

COMPARATIVE STUDY OF USING PROBIOTIC AND PREBIOTIC IN FEEDING BROILER CHICKS REARED IN CAGES

By

FAYZA MOHAMED MANSOUR SALEM

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 1997M.Sc. Agric. Sc. (Poultry Nutrition), Ain Shams University, 2005

Under the supervision of:

Dr. Alla Eldin Abdel Salam Hemid

Prof. of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Nabil Mohamed El-Medany

Prof. of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Dr. Khaled Abd El-Galil Hasan

Research Prof. of Poultry Nutrition, Department of Animal and Poultry Production, Desert Research Center

ABSTRACT

Fayza Mohamed Mansour Salem: Comparative Study of Using Probiotic and Prebiotic in Feeding Broiler Chicks Reared in Cages. Unpublished Ph.D. Thesis, Department of Poultry Nutrition, Faculty of Agriculture, Ain Shams University, 2012.

Two hundred and forty unsexed one day-old Hubbard broiler chicks were used up to 6 weeks of age to study effects of probiotic, prebiotic, and their combination (synbiotic) on growth performance, feed utilization, and intestinal microbial populations. Chicks were divided into 6 treatments, each with 5 replicates of 8 chicks each. Starter (1-14 days) and growing (15-42 days of age) diets were fed ad lib. Treatments were as follows, the control (T1); probiotic (Bio-plus2B®, 400g/ton diet, T2); prebiotic (Techno Mos®, 500g/ton diet, T3); and three synbiotic treatments (200 and 250g/ton (T4), 400 and 500g/ton (T5), and 800 and 500g/ton diet (T6), for Bio-plus2B® and Techno Mos®, respectively). Effect of treatments on body weight and gain was only significant at growing period. Body weight and gain at 6 weeks of age were significantly increased by synbiotic treatments at recommended (T5) or at high level (T6), while the effect of synbiotic at low level (T4) was not significant. Similar trend was observed with the full period (0-6 weeks). The addition of either probiotic (T2) or prebiotic (T3) had a significant (P < 0.05) reduction in body weight and gain in comparison with the recommended synbiotic (T5). However, synbiotic treatments significantly (P < 0.05) increased feed intake at starter and growing periods, while only prebiotic (T3) resulted in a significant reduction in feed intake (P < 0.05) and numerically improved feed conversion ratio during growing period.

Plasma total protein was significantly (P < 0.05) increased by only prebiotic (T3). Similar trend was shown with plasma albumin, although the effect was non-significant (P > 0.05). Plasma globulin was significantly (P < 0.01) increased by only prebiotic (T3) which indicates

same trend as plasma total protein. Synbiotic at low level (T4) showed the lowest values of plasma globulin and total protein. Plasma triglycerides was significantly (P < 0.05) reduced by adding only prebiotic (T3) in comparison with the control (T1) and probiotic (T2) treatments. In addition, chicks fed on synbiotic treatments showed a significant (P < 0.05) reduction in plasma triglycerides and cholesterol. However, neither the addition of probiotic (T2) nor prebiotic (T3) had a significant effect on plasma cholesterol.

Birds receiving a ration containing only prebiotic (T3) showed a significant (p<0.05) increase in carcass (%) as compared with the control (T1), while birds receiving combination treatments (T4, T5 and T6), numerically improved carcass (%) compared to the control group. However, there was no significant difference in carcass (%) between adding probiotic alone (T2) and control treatment (T1). On the other hand, all dietary treatments had no significant effect on carcass weight or on relative value of gizzard, liver, heart, spleen and bursa as a percent of live body weight. However, the effect of experimental treatments on dry and organic matter intake, excretion, and retention was non-significant compared to the control treatment.

There was a significant (P<0.01) reduction in total coliform (TC), fecal coliform (FC) and fecal streptococci (FS) in all experimental treatments compared to the control group. The effect of adding probiotic and/or prebiotic at different levels to broiler diets did not have a significant effect on total viable bacterial (TVBCs) and *Lactobacills* bacterial counts. Addition of different levels of probiotic and/or prebiotic to broiler diets increased all of jejunal villi height and width and also the number of villi and crypts cells.

Results revealed that probiotic and prebiotic can be used as good growth promoters in broiler diets. The use of broiler diets supplemented with synbiotic appeared to have better performance than the use of either probiotic or prebiotic solely. Synbiotic addition resulted in reduction of plasma cholesterol and triglycerides, and the harmful bacteria in small

intestine that can produce healthy broiler meat products for human consumption.

Keywords: broiler chicks, probiotic, prebiotic, synbiotic, performance, bacterial population, villi, and blood metabolites.

ACKNOWLEDGEMENTS

First of all, thanks to **MIGHTY GOD (ALLAH)** for the continuous and persistent supply with patience and effort to produce this study.

I would like to express my greatest gratitude to **Prof. Dr. Alla Eldin Abdel Salam Hemid,** Prof. of Poultry Nutrition, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his helpful, supervision, encouragement, and reading and revision of the manuscript.

With my greatest thankful to **Prof. Dr. Nabil M. El-Medany,** Prof. of Poultry Nutrition, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision, help in the field and laboratory, encouragement and for revision of the manuscript.

My gratitude is due to **Prof. Dr. Khaled Abd El-Galil**, Prof. of Poultry Nutrition, Animal & Poultry Nutrition Department, Desert Research Center for his supervision, help in laboratory work, and encouragement.

I wish to express my greatest thankful to **Prof. Dr. Hussein A. El-Alaily,** Prof. of Poultry Nutrition, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his helpful with great enthusiasm the work undertaken, offering the requirements of the work in the field, encouragement and for reading and revision of the manuscript.

My gratitude is due to **Prof. Dr. Ibrahim El-Werdany** Prof. of Poultry Physiology, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his help in histological examination work, and his encouragement.

All true words of acknowledgement and thanks towards my husband **Dr. Ahmed Askar**, for help in the statistical analysis, revision the manuscript, and for his encouragement throughout the period of this study.

Sincere gratitude should also be expressed to all staff members of the Poultry Production Department, Faculty of Agriculture, Ain Shams University for their help and cooperation throughout the period of this study.

I wish to express my sincere thanks and gratitude to all staff members and my colleagues at the Animal & Poultry Production Division, Desert Research Center for their cooperation throughout the period of the study.

Finally, I would like to present my thesis to my mother, father, brothers and sisters and to every one helped me to achieve this work.

CONTENTS

	Pag€
LIST OF TABLES	iii
LIST OF FIGURES	V
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. The definition of probiotic and prebiotic	3
2. Characteristics and benefits of probiotic and prebiotic	4
3. Types of probiotic and prebiotic	4
4. Mode of action of probiotic and prebiotic	7
4.1. Mode of action of Probiotic	7
4.2. Mode of action of Prebiotic	9
5. Probiotic using as an alternative source of antibiotic in	10
poultry diets	
6. Effects of probiotic and prebiotic in poultry diets	12
6.1. The effect on performance parameters of broiler chicks	12
6.2. The effect on intestinal microflora populations	15
6.3. The effect on intestinal histology	20
6.4. The effect on blood metabolies	22
6.5. The effect on carcass characteristics	25
MATERIALS AND METHODS	27
1. Birds and management	27
2. Experimental diets	27
3. Digestibility (balance) trial	28
4. Slaughter parameters	29
5. Biochemical analysis	29
6. Bacteriological analysis	29
7. Histological observations	29
8. Chemical analysis	30
9. Statistical analysis	30
RESULTS AND DISCUSSION	31

1. The effect of probiotic and/or prebiotic levels on broiler	31
chick performance	
2. The effect of probiotic and/or prebiotic levels on carcass	36
traits	
3. The effect of probiotic and/or prebiotic levels on nutrients	38
intake and retention	
4. The effect of probiotic and/or prebiotic on some blood	39
parameters	
4.1. Plasma total protein, albumin, and globulin	39
4.2. Plasma cholesterol and triglycerides	43
5. The effect of probiotic and/or prebiotic levels on intestinal	47
microbial populations	
6. The effect of probiotic and/or prebiotic levels on	51
histological examination of the intestinal section (Jejunum)	
SUMMARY AND CONCLUSION	59
REFERENCES	64
ARABIC SUMMARY	

LIST OF TABLES

	Page
Table 1. Composition and calculated analysis of the	28
experimental diets.	
Table 2. Effect of adding different levels of probiotic,	32
prebiotic and/or their mixture (synbiotic) in broiler diets on	
body weight, body weight gain, feed intake, and feed	
conversion ratio at the starter (week 0-2) and grower (week	
3-6) periods.	
Table 3. Effect of adding different levels of probiotic and/or	37
prebiotic and their mixture in broiler diets on carcass traits at	
6 weeks of age.	
Table 4. Effect of adding different levels of probiotic and/or	39
prebiotic and their mixture in broiler diets on dry and	
organic matter intake (kg), excretion (kg), and retention (%)	
during the third week of age.	
Table 5. Effect of adding different levels of probiotic,	41
prebiotic and/or their mixture (synbiotic) in broiler diets on	
some blood metabolites (g/dl), total protein, albumin, and	
globulin at 6 weeks of age.	
Table 6. Effect of adding different levels of probiotic,	44
prebiotic and/or their mixture (synbiotic) in broiler diets on	
some blood metabolites (mg/dl), triglyceride and cholesterol,	
at 6 weeks of age.	
Table 7. Effect of adding different levels of probiotic and/or	48
prebiotic and their mixture in broiler diets on small intestine	
total viable bacterial counts (TVBCs); the harmful bacteria,	
TC (total coliform), FC (fecal coliform), and (fecal	
streptococci); and Lactobacillus at 6 weeks of age.	

Table 8. Effect of adding different levels of probiotic and/or prebiotic and their mixture in broiler diets on Histological examination of the intestinal sections (microscopic field) 6 weeks of age.

52

LIST OF FIGURES

	Page
Fig. 1. Mechanisms for mode of action of probiotic.	8
Fig. 2. Cholesterol as the precursor for the synthesis of new	23
bile acids, and the hypocholesterolemic role of bile salt	
hydrolase.	
Fig. 3. Effect of addition of different levels of probiotic,	34
prebiotic and/or their mixture (synbiotic) on body weight at	
6 weeks of age.	
Fig. 4. Effect of addition of different levels of probiotic,	34
prebiotic and/or their mixture (synbiotic) on body weight	
gain (0-6 weeks of age).	
Fig. 5. Effect of addition of different levels of probiotic,	35
prebiotic and/or their mixture (synbiotic) on feed intake (0-	
6 weeks of age).	
Fig. 6. Effect of addition of different levels of probiotic,	35
prebiotic and/or their mixture (synbiotic) on feed	
conversion ratio, feed/gain (3-6 weeks age).	
Fig. 7. Effect of addition of different levels of probiotic,	36
prebiotic and/or their mixture (synbiotic) on feed	
conversion ratio, feed/gain (0-6 weeks age).	
Fig. 8. Effect of addition of different levels of probiotic,	41
prebiotic and/or their mixture (synbiotic) on plasma total	
protein at 6 weeks of age.	
Fig. 9. Effect of addition of different levels of probiotic,	42
prebiotic and/or their mixture (synbiotic) on plasma	
albumin at 6 weeks of age.	
Fig. 10. Effect of addition of different levels of probiotic,	42
prebiotic and/or their mixture (synbiotic) on plasma	
globulin at 6 weeks of age.	

Fig. 11. Effect of addition of different levels of probiotic,	46
prebiotic and/or their mixture (synbiotic) on plasma	
triglycerides at 6 weeks of age.	
Fig. 12. Effect of addition of different levels of probiotic,	46
prebiotic and/or their mixture (synbiotic) on plasma	
cholesterol at 6 weeks of age.	
Fig.13. Histological examination in jejunum section from	53
the control treatment T1.	
Fig.14. Histological examination in jejunum section from	54
the probiotic treatment (400g/ton diet T2).	
Fig.15. Histological examination in jejunum section from	55
the prebiotic treatment (500g/ton diet T3).	
Fig.16. Histological examination in jejunum section from	56
the probiotic + prebiotic treatment (200g + 250g/ton diet	
respectively T4).	
Fig.17. Histological examination in jejunum section from	57
the probiotic + prebiotic treatment (400g + 500g/ton diet	
respectively T5).	
Fig.18. Histological examination in jejunum section from	58
the probiotic + prebiotic treatment (800g + 500g/ton diet	
respectively T6).	