ROLE OF FUNCTIONAL MRI IN CORTICAL BRAIN MAPPING

Essay
Submitted for the Partial Fulfillment of Master Degree
in Radiodiagnosis

By Samar Gouda Mahrous Mohammed M.B, B.Ch.

Under Supervision of

Prof. Dr./ Hanan Mohamed Hanafy

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. / Noha Mohamed Osman

Lecturer of Radiodiagnosis Faculty of Medicine Ain Shams University

Faculty of Medicine - Ain Shams University 2012

دور الرنين المغناطيسي الوظيفي في رسم خريطة قشرة المخ

رسالة

توطئة للحصول على درجه الماجستير في الأشعة التشخيصية مقدمة من

> الطبيب/ سمر جودة محروس محمد بكالوريوس الطب والجراحة جامعة عين شمس

> > تحت إشراف

أد/ حنان محمد حنفي

أستاذ الأشعة التشخيصية كلية الطب- جامعة عين شمس

د/نهی محمد عثمان

مدرس الأشعة التشخيصية كلية الطب- جامعة عين شمس

كلية الطب - جامعة عين شمس ٢٠١٢

SUMMARY & CONCLUSION

The first generation of brain imaging techniques has perfected our ability to visualize macroscopic structural lesions. For many disorders of the brain, however, dysfunction is caused by impaired neuronal physiology more than by altered gross anatomy.

Because of this patho-physiological feature, many of these disorders cannot be visualized with 'structural' imaging, and are even invisible under the microscope. By perfecting the ability to visualize physiological dysfunction, the next generation of brain imaging – functional imaging – will not only revolutionize the clinical management but also contribute to our basic understanding of this class of disease.

Neurosurgery in functionally important brain sites carries a high risk for surgery induced neurological deficits. Reduction of morbidity associated with treatment is of utmost importance, neurosurgery aims to eliminate as much of the lesion as safely possible by maintaining important functions of the brain. This is achieved by application of new diagnostic technologies like fMRI which plays an important role in this field.

Functional MR imaging can be used to identify eloquent cortical regions, it enables the surgeon to take therapeutic decisions and to advise the patient carefully about the risks and also the benefits of the procedure. In certain patients, surgical

First and foremost, I am always indebted to **ALLAH**, the most kind and merciful.

I would like to express my deepest thanks, gratitude and profound respect to Prof. Dr. Hanan Mohamed Hanafy, Professor of Radiodiagnosis, Faculty of medicine, Ain Shams University for her great help and kindness.

I would like to express my wormiest appreciation and cardinal thanks to Dr. Noha Mohamed Osman, Lecturer of Radiodiagnosis, Faculty of medicine , Ain Shams university for her persistent effort, valuable guidance and meticulous revision of the work.

Special thanks to my beloved Mom, my caring husband, and my little kids. If it weren't for their patience and constant support, I would never have been able to finish this work.

Finally, I would like to dedicate this work to the soul of my father, the greatest father ever, May **ALLAH** mercy him....

List of Contents

	Title	Page No.
•	Introduction	1
•	Aim of the Work	3
•	Anatomical Considerations	4
•	Physiology & Basic Principles of the BOLD Technique	e27
•	Technique of fMRI	46
•	Advantages & Clinical applications of fMRI	75
•	Challenges of fMRI	100
•	Summary & Conclusion	117
•	References	120
•	Arabic Summary	

List of Figures

Fig. No.	Title Page	No.
Fig. (1):	Diagram representing the superolateral	
	surface of the cerebral hemisphere	9
Fig. (2):	Lateral aspect of the left hemisphere	
Fig. (3):	Superior aspect of the left and right	
	hemispheres	10
Fig. (4):	Medial aspect of the right cerebral	
_	hemisphere	12
Fig. (5):	Inferior aspect of the brain with	
	cerebellum and brainstem removed	14
Fig. (6):	Schematic drawing showing the	
_	topographic representation of different	
	body parts in the motor cortex	16
Fig. (7):	Diagram of human brain showing surface	
	gyri and the primary auditory cortex	20
Fig. (8):	Diagram representing Brodmann areas	
	numbered	22
Fig. (9):	Diagram representing Microscopic	
	structure of the neuron	26
Fig. (10):	Diagram representing an overview of the	
	aerobic metabolism of glucose to ATP	
	following the Kreb's cycle	27
Fig. (11):	Diagram representing the blood supply of	
	the nerve cells	29
Fig. (12):	Idealized time course of the hemodynamic	
	response following a long (approximately	
_	20 s) stimulation event	33
Fig. (13):	Diagram representing relation between	
	neural activities to BOLD MRI responses	34
Fig. (14):	Comparing Signal Intensity (SI) in	
	Different States	36

List of Figures (cont...)

Fig. No.	Title Pag	e Na.
Fig. (15):	Multiplanar views of language BOLD	
	activation overlaid on FA-weighted color	
	directional diffusion maps superimposed	
	on postgadolinium 3D magnetization-	
	prepared rapid acquisition of gradient	
	echo high-resolution anatomic images in a	
	patient with a left trigonal	
7 1 (1.0):		39
Fig. (16):	Intraoperative view of a patient showing	
	bipolar stimulation using a probe with two	4.0
T' (4 5).	tips separated by 5 mm.	45
Fig. (17):	Diagram representing schematic	4.5
T: (10).	illustration of different paradigms	47
Fig. (18):	Representing a task-induced signal	
	change for a sensory task involving tactile	F 1
E:~ (10):	stimulation (touching) the left hand	01
Fig. (19):	Steps Involved in the Processing of fMRI Data	51
Fig. (20):	Principle of Statistical Analysis.	
Fig. (21):	fMRI motor cortex somatotopy	
Fig. (22):	fMR images, in the transverse plane, show	0 1
119. (22)	areas of cortical activation during	58
Fig. (23):	Variation of paradigms to localize the	
g . (-0)	motor hand area results in different	
	activation patterns.	59
Fig. (24):	Diagrams representing recommended self-	
J	paced movements to investigate	
	sensorimotor somatotopy in clinical fMRI	60
Fig. (25):	Clinical standard protocol for motor	
	paradigms	61
Fig. (26):	Fully Automated Pneumatically Driven	
	Tactile Stimulation.	62
Fig. (27):	Presurgical fMRI Somatotopic Mapping of	
	Primary Somatosensory Cortex (S1)	63

List of Figures (cont...)

Fig. No.	Title Page	No.
Fig. (28):	Schematic drawing of language areas in	
	the left hemisphere according to the	
	classical language model	64
Fig. (29):	Diagram representing Nonmagnetic	
	mirror glasses with slide-in module for	
	optical correction lenses that were fitted	
	before functional MR imaging in the	
, ,	ophthalmology outpatient clinic	66
Fig. (30):	Examples of visually presented triggers	
	for (left) SG & (right) WG paradigms	67
Fig. (31):	Presurgical fMRI language localization	
	and lateralization in a right handed	
	patient with a malignant glioma of the left	
	superior temporal gyrus – critical to	
	Wernicke's area by anatomical	
, ,	consideration.	68
Fig. (32):	Temporal Lobe Auditory Responses	
	during Text Listening.	
Fig. (33):	Checkerboard Visual Stimulus	
Fig. (34):	fMRI Mapping of Visual Cortex.	72
Fig. (35):	Responses during Performance of Face	
	Memory Paradigm.	73
Fig. (36):	fMRI images of a 77-year-old man	
	suffering from left temporal lobe	
	metastatic adenocarcinoma	79
Fig. (37):	Three axial anatomic MRI scans (top) and	
()	fMRI scans (bottom)	
Fig. (38):	Functional Neuronavigation.	
Fig. (39):	Seizure localization with fMRI.	81
Fig. (40):	Presurgical language mapping in a	
	patient with intractable left temporal lobe	<u> </u>
T	epilepsy	
Fig. (41):	Post ictal versus interictal fMRI.	83
	List of Figures (cont)	

Fig. No.	Title	Page No.
Fig. (42):	Image showing brain areas more active in controls than in schizophrenia patient during a working memory task during fMRI study	s a
Fig. (43):	The BOLD response in the hippocampa formation induced by a cognitive 'strest test' dissociates Alzheimer's disease from age-matched controls	ıl s n
Fig. (44):	Functional MRI demonstrating moto cortex plasticity in a child with large brain	r n
Fig. (45):	tumor. Composite maps (columns 1 and 2 demonstrating brain activation in non impaired (NI) and dyslexic (DYS) reader as they determined whether tw pseudowords rhymed (NWR, non-word)	s s o
Fig. (46):	rhyme)	93
Fig. (46):	Effects of cocaine and methylphenidate or changes in BOLD signal.	
Fig. (47):	Cortical activation evoked by noxiou esophageal distention and noxiou thermal heat in insular cortex (A; IC; primary motor cortex (B; M1), and anterior cingulate cortex (C; ACC)	s), d
Fig. (48):	Detection of Venous Activation.	
Fig. (49):	Dampened BOLD Signal due to Brain Tumor.	n
Fig. (50):	Cortical Reorganization in AVM	106
Fig. (51):	Effect of Caffeine on BOLD Signal	107
Fig. (52):	Comparison of Selected Functional Slice with the Cerebral Vasculature a Examined by Magnetic Resonance	S
	Angiography	108
Fig. (53):	Movement Related Artifacts	110
List of Figures (cont)		

Fiz. No.	Title Pay	çe No.
Fig. (54):	Comparison of MR Signal Time Course of True Activation & Motion Induced False	
 - ()	Activation.	111
Fig. (55):	Effect When the Subject is Not Cooperating during the fMRI Exam	113
Fig. (56):	Susceptibility Artifact.	115
Fig. (57):	Spikes in fMRI Time Trace	116

List of Abbreviations

All.	Full term
AC	Auditory cortex
AD	Alzheimer's disease
ADHD	Attention deficit hyperactive disorder
ADP	$Adenosine\ diphosphate$
AG	Angular gyrus
ATP	$Adenosine\ triphosphate$
AVM	Arterio-venous malformation
BA	Broadman area
BOLD	Blood oxygen level dependent
CBF	Cerebral blood flow
CBV	Cerebral blood volume
CNS	Central nervous system
CPT	Current procedural terminology
CPUs	Central processing units
CS	Central sulcus
DES	Direct electrical stimualtion
DTI	Diffusion tensor imaging
EEG	Electroence phalography
FDA	Food and drug adminisration
FDG	Fluoro deoxy glucose
FLAIR	Fluid attenuation inversion recovery
<i>fMRI</i>	Functional MRI
GE-EPI	Gradient echo echo planar imaging

Hb Hemoglobin

HRF Hemodynamic reference functionIAP Intra carotid Amobarbital procedure

ICA Internal carotid artery

IED Interictal epileptiform discharges

IFG Inferior frontal gyrus
 IOG Inferior occipital gyrus
 IPL Inferior parietal lobule
 ITG Inferior temporal gyrus
 ITS Inferior temporal sulcus

IV Intravenous

LI Lateralization index

MEG Magnetoencephalography

MFG Middle frontal gyrusMOG Middle occipital gyrus

MRS Magnetic resonance spectroscopy

MSI Magnetic source imagingMTG Middle temporal gyrusMTL Medial temporal lobe

PACS Picture archiving & communication

system servers

paraCL paracentral lobule

PET Positron emission tomography

post CGPostcentral gyruspreCGPrecentral gyrus

rCBF Regional cerebral blood flow

rCBV Regional cerebral blood volume

S Seconds

SFG Superior frontal gyrus
SG Sentence generation

SI Signal intensity

SMA Supplementary motor area

SMASensory motor areaSMGSupramarginal gyrusSNRSignal to noise ratio

SOG Superior occipital gyrus
SOS Superior occipital sulcus

SPECT Single photon emission computed

tomography

SPL Superior parietal lobule

SPM Satistical parametric map
STG Superior temporal gyrus
STS Superior temporal sulcus

subCG Subcentral gyrus

T Tesla

TL Temporal lobe

TLE Temporal lobe epilepsy

WA Wernick's areaWG Word generation

INTRODUCTION

The first generation of brain imaging techniques has perfected our ability to visualize structural lesions as neoplasms, strokes. infections. sclerotic plaques. hydrocephalus...etc. For many disorders of the brain, however, dysfunction is caused by impaired neuronal physiology more than by altered gross anatomy; these include many developmental disorders, most psychiatric diseases, age-related cognitive decline, and even the earliest stages of neurodegeneration. Because of this pathophysiological feature, many of these disorders cannot be visualized with structural imaging, and are even invisible under the microscope. By perfecting the ability to visualize physiological dysfunction, the next generation of brain imaging – functional imaging – will not only revolutionize the clinical management but also contribute to our basic understanding of this class of disease (Logothetis & Pfeuffer, 2004 (67)).

Functional MRI (fMRI) can image the hemodynamic and metabolic changes that are associated with human brain functions such as vision, motor skills, language, memory, and mental processes (*Richardson et al.*, 2004 (98)).

Functional MRI (fMRI) refers to the demonstration of brain function with neuro-anatomic localization on a real-time basis. Functional MRI is performed using BOLD (Blood Oxygen Level Dependant) technique. The principle of the

1

BOLD technique is that performing a predefined cognitive task leads to regionally increased neuronal activity and localized hemodynamic changes that produce a signal response (*Pillai*, 2010 (92)).

Although positron emission tomography (PET), and, more recently, magnetoencephalography (MEG), also have provided opportunities to assess brain function non-invasively, the combined spatial and temporal resolution of fMRI, the wider availability of MRI scanners, and the broad range of available activation paradigms confer distinct advantages over these alternative approaches to functional neuroimaging (Moritz and Haughton, 2003 (77)).

The BOLD fMRI examination for preoperative and intraoperative neurological guidance can facilitate planning of surgery, shorten the duration of the operation and anesthesia time and may alleviate the need to awaken the patient during the operation for language and motor mapping (Moritz & Haughton, 2003 (77)).

In the past two decades fMRI has stretched its horizon from being a mere research tool to a highly relevant clinical investigation for surgical planning. Its role in dyslexia, Alzheimer disease, brain AVM, psychological disorder and assessment of brain plasticity has been recognized and increasing number of new applications are emerging every day (Hashimoto et al., 2010 (48)).