

CAIRO – EGYPT Electronics and Communication Engineering Department

Secure and efficient symmetric-key encryption algorithm

Dissertation submitted to the faculty of Engineering – Ain-Shams University in partial fulfilled of the requirements for the degree of Master of Science in Electrical Engineering

Submitted By

Eng. Ahmed Mahmoud Salama Rayan

Electronics and Communication Eng. Department Faculty of Engineering – Ain-Shams University

Supervised By

Prof. Dr. Ismail Mohamed Hafez

Professor in Electronics and Communication Eng. Department Faculty of Engineering – Ain-Shams University (ASU)

Cairo – Egypt

Ass. Prof. Dr. Ahmed Ali Abdel-hafez

Communications Department

Military Technical Collage (MTC)

Cairo – Egypt

Cairo 2017

Examiners Committee

Name: Ahmed Mahmoud Salama Rayan

Thesis: Secure and efficient symmetric-key encryption algorithm

Degree: Master of Science

Name, Title, and Affiliate	Signature
1. Prof. Dr. Talaat Abdel Latief Ibrahim El Garf Professor of Communications in Higher Technological Ir	nstitute (HTI)
2. Prof. Dr. Salwa H. El- ramly Professor in Electronics and Communication Eng. Depart	tment (ASU)
3. Prof. Dr. Ismail Mohamed Hafez Professor in Electronics and Communication Eng. Depart	tment (ASU)
4. Ass. Prof. Dr. Ahmed Aly Abdel-hafez Communications Department (MTC)	

Date: /01/2017

STATEMENT

This dissertation is submitted to Ain Shams University in partial fulfillment of the degree of Master of Philosophy in Electrical Engineering.

The work included in this dissertation was out by the author in the department of electronics and Communication Engineering, Ain Shams University.

No part of this dissertation has been submitted for a degree or qualification at other university or institution.

Name : Ahmed Mahmoud Salama Rayan

Abstract

Secure and efficient symmetric-key encryption algorithm

In 1997, a competition to choose a symmetric-key encryption algorithm instead of Data Encryption Standard algorithm (DES) was started by the National Institute of Standards and Technology (NIST). NIST specified the evaluation criteria for chosen the candidate algorithms relying on the analyses and comments received. These criteria are divided into two main categories:

- i. Algorithm security.
- ii. Algorithm implementation features.

Algorithm security was the main significant criteria, it includes characteristics as: algorithm strength to attacks, its mathematical foundation and the output randomness.

Finally, NIST selected five finalist algorithms (Rijndael, Serpent, RC6, MARS and Twofish). Then, NIST chose Rijndael to be the suggested Advanced Encryption Standard algorithm (AES).

Twofish algorithm, one of the last five candidate algorithms has a large security margin but also has some drawbacks as its structure is hard to analyses, the mingling of many processes makes it not easy to produce a fair analysis and imposes to searching for approximation mechanisms. Moreover, the use of key-dependent S-boxes increases the complexity and the effort needed to estimate the characteristics (differentials, linear ...) of the structure.

In this thesis a proposal of a provably Secure Symmetric-key Encryption (SSE) algorithm based on Feistel structure is presented to overcome the previous drawbacks. A 16-round reversible Basic Feistel Network (BFN) is presented, besides construct a novel key schedule. It supports 128-bit and 256-bit symmetric key block cipher with 128-bit key size; its key size can be extended to 256 bits.

(SSE) algorithm is simple and pliable design, ease and efficient analysis. Strong Key dependent S-boxes layer is used to overcome the drawbacks (differential cryptanalysis – linear cryptanalysis) of fixed S-boxes. A proven security for each component is provided.

Its key schedule is secure and straight forward for analysis; reuse the Same Primitives that is used in the encryption algorithm. It provided 40 subkeys of expanded key SK_0 , ..., SK_{39} and 16 rounds constant RC_0 ,, RC_{15} for each round that is used with the Sboxes input of (SSE) algorithm.

Acknowledgement

First and Foremost I would like to thank ALLAH — the Ever-Living and the Sustainer

of all existence, the One that neither begets nor is born and nor is there to Him any

equivalent.

I feel honored to record my deepest sense of gratitude and thanks to my supervisors:

Prof. Dr. Ismail Mohamed Hafez (ASU)

Prig. Ass.Prof. Ahmed Ali Abdel-Hafez (Egyptian Armed Forces)

Thanks for their supervision, guidance, generous advice, criticism, and continuous

encouragement throughout this research.

Many thanks go to my commander Prig. Ass.Prof. Ahmed Aly Abdel-Hafez for his

advice, for the open door policy and for many useful feedbacks during the writing of this dissertation. I believe that your supervision has allowed me to grow up as a

researcher.

Finally, I would like to thank my family to whom I owe a great deal. To my late father,

my late mother, my sister, my brothers, my wife and my children.

I apologize for my wife and my children for all the long nights and weekends, and

holidays which I missed. Thanks for your endless support, encouragement,

understanding and helping me through all my work.

Dear Thanks for all

V

Ahmed Mahmoud Prayan

Cairo 2016

Dedication

To the soul of my late father and mother

List of Acronyms

Abbreviation

AES Advanced Encryption Standard

ANF Algebraic normal form

BC Before Christ

BFN Basic Feistel Networks

CBC Cipher Block Chaining

CFB Cipher Feedback

CPU Central Processing Unit

CTR Counter

DES Data Encryption Standard

DPA Differential power analysis

ECB Electronic Codebook

GCD Greatest Common Divisor

GF Galois Field

GFN Generalized Feistel Networks

HW Hamming Weight

IV Initial Value

KC Key Constant

MDS Maximum Distance Separable

NBS National Bureau of Standards

NIST National Institute of Standards and Technology

NL nonlinearity

OFB Output Feedback

PC Propagation Criterion

PKC Public Key Cryptography

RC Round Constant

RC6 Rivest cipher 6

S_boxes Substitution boxes

SAC Strict Avalanche Criterion

SHA Secure Hash Algorithm

SKC Secret Key Cryptography

SP Substitution Permutation

SPA Simple power analysis

SPN Substitution Permutation Network

SSE Secure Symmetric-key Encryption

STS Statistical Test Suite

UFN Unbalanced Feistel Networks

Wt Weight of a Boolean function

List of Symbols

Symbol

⊕ Xor

+ Addition

 \leq Less than or equal

≥ Large than or equal

= equal

≠ Not equal

≡ Congruent

∈ Belongs to

∀ For all

∃ There exists

 \sum Sum

 \mathbf{Z}_{p} , GF (P) Finite Fields of Order p

 \mathbf{Z}_{p^n} , GF (p^n) Finite Fields of prime p and n is the degree of

irreducible polynomial

 $W_t(f)$ Hamming weight (HW) of function f

 d_H Hamming Distance

ε bias

F ^ Walsh-Hadamard transform

 \diamond scalar product over F_2

Table of Contents

STATEMENT	iii
Abstract	iv
Acknowledgement	v
Dedication	vi
List of Acronyms	vii
List of Symbols	ix
Table of Contents	x
List of Figures	xiv
List of Tables	xvi
CHAPTER 1 Background and Problem Statement	1
1.1 Short History of Block cipher	1
1.2 Provable Security of Block cipher	2
1.3 Historical Roots of the Problem and its Description	2
1.4 About this thesis	3
CHAPTER 2 CRYPTOGRAPHIC SERVICES	5
2.1 Cryptographic services	5
2.1.1 User Authentication	5
2.1.2 Data Authentication	5
2.1.3 Data Integrity	6
2.1.4 Data origin authentication	6
2.1.5 Non-repudiation of origin	6
2.1.6 Data confidentiality	6

2.2	Cryp	otographic Categories	6
2.2.1	Class	sical Cryptography	6
	2.2.1	.1 Caesar Substitution	7
	2.2.1	.2 Monoalphabetic Substitution	7
	2.2.1	.3 Transpositions	7
2.2.2	Key-	-based cryptography	7
2.3	Cryp	otography techniques	8
2.3.1	Secre	et Key Cryptography	8
2.3.2	Publ	ic-Key Cryptography	13
2.3.3	Hash	n Functions	14
2.4	Conc	clusion	14
CHA	PTER	3 Block Cipher Principles	15
3.1	Math	nematical foundations	15
3.1.1	Num	nber Theory	15
3.	1.1.1	Divisibility. Factors. Primes	15
3.	1.1.2	Greatest Common Divisor	15
3.	1.1.3	Modular Arithmetic	16
3.	1.1.4	Modular Inverse	16
3.1.2	Abst	ract Algebra	17
3.	1.2.1	Group	17
3.	1.2.2	Ring	17
3.	1.2.3	Field	18
3.1.3	Poly	nomial Arithmetic	18
3.1.4	Finit	re Fields	19
3.2	Bloc	k Ci orks	21
3.2	2.1.2	Feistel Networks	21
3.3	Desi	gn principle of block ciphers	22
3.3.1	Bool	lean functions	22
3.3	3.1.1	Algebraic normal form (ANF)	23
3.3	3.1.2	Weight of a Boolean function	23
3.3	3.1.3	Hamming Distance	24
3 3	3.1.4	Bias of a Boolean function	2.4

	3.3.	1.5	Walsh-Hadamard transform	24
	3.3.	1.6	Boolean functions cryptographic criteria	25
	3.3.	1.7	Vectorial Boolean function	27
3.3	.2	Cryp	tographic S_boxes	27
3.3	.3	Diffu	sive Components	29
	3.3.	3.1	MDS matrix generation	29
	3.3.	3.2	Efficient MDS matrix generation	30
3.4		Blocl	k Cipher Attacks	31
3.4	.1	An A	attack Outcome	31
3.4	.2	Attac	ck Model of a Block Cipher	31
3.4	.3	Туре	s of Attack	32
	3.4.	3.1	Black-box attacks	32
	3.4.	3.2	Shortcut attacks	32
	3.4.	3.3	Side-Channel attacks	34
3.5		Conc	elusion	35
СН	[AP]	TER 4	Feistel Network Struct	ure36
4.1		Basic	Feistel network Structure (BFN)	37
4.2		Gene	eralized Feistel Networks (GFN)	37
4.3		Unba	alanced Feistel Networks (UFN)	38
4.4		Exan	nples of Basic Feistel network Structure (BFN)	38
4.4	.1	Data	Encryption Standard Algorithm (DES)	38
	4.4.	1.1	DES structure	39
	4.4.	1.2	DES Decryption	42
	4.4.	1.3	DES Security	42
4.4	.2	Twof	fish Algorithm	43
	4.4.	2.1	Input whitening	44
	4.4.	2.2	Twofish function module	44
	4.4.	2.3	Twofish Decryption	46
	4.4.	2.4	Twofish Security	46
4.5		Conc	elusion	47
CL	rd A 1	TED 5	New Secure Symmetric-Key Encryption (SSE) Algorit	hm 10

5.1	Observations of Twofish Algorithm
5.2	(SSE) algorithm design Goals
5.3	Secure Symmetric-key Encryption (SSE) algorithm
5.4	(SSE) Building Blocks
5.4.1	Basic Feistel Networks (BFN)
5.4.2	Whitening
5.4.3	F function
5.4	.3.1 S-boxes Layer
5.4	.3.2 Diffusion layer
5.4.4	Key Schedule
5.5	SSE algorithm Test Vectors
5.5.1	Intermediate Values (Encryptions / Decryption)
5.5.2	Full Encryptions / Decryption
5.6	Conclusion
CHAP'	TER 6(SSE) Algorithm Security71
6.1	Statistical Test Suite
6.2	SSE Algorithm attacks
6.2.1	Brute force attack
6.2.2	Linear and differential cryptanalysis
6.2.3	Higher order differential cryptanalysis
6.2.4	Interpolation attack
6.2.5	Related-key attack and slide attack
6.2.6	Related subkey attack
6.3	Conclusion
CHAP'	TER 7Conclusion and Future Work82
7.1	Conclusions
7.2	Recommendations for Future Work
Refere	nces
Appen	dix A

List of Figures

Fig. No.	Title	Page No.
Figure 2.1	1 Cryptographic Model	5
Figure 2-2	2 Data origin authentication	6
Figure 2-3	3 Non-repudiation of origin	6
Figure 2-4	4 Ancient Egyptians cipher	7
Figure 2-5	5 SPN scheme	9
Figure 2-	-6 Feistel scheme	9
Figure 2-7	7 Lai-Massey scheme	10
Figure 2-8	8 Electronic Codebook mode (ECB)	11
Figure 2-9	9 Cipher Block Chaining mode (CBC)	11
Figure 2-1	10 Cipher Feedback mode (CFB)	12
Figure 2-	-11 Output Feedback mode (OFB)	12
Figure 2-	-12 Counter mode (CTR)	13
Figure 2-1	13 Public-Key Cryptography	13
Figure 2-1	14 Hash function	14
Figure 3-1	1 Group, Ring and Field	18
Figure 3-2	2 Block Cipher	20
Figure 3-3	3 Key-alternating cipher	21
Figure 3-4	4 Feistel network	21
Figure 4-1	1 One round Feistel network	37
Figure 4-2	2 One round GFN	37
Figure 4-3	3 One round UFN	38
Figure 4-4	4 DES algorithm	39
Figure 4-5	5 DES Round Structure	40
Figure 4-6	6 DES S-boxes	41
Figure 4-7	7 DES Key Generation	42
Figure 4-8	8 Twofish Algorithm	43
Figure 4-9	9 Twofish algorithm steps	43
Figure 4-1	10 Function F	44
Figure 4-1	11Function g	45
Figure 4-1	12 K subkeys generation	46
Figure 5-1	1 SSE algorithm	50