THE ROLE OF AURKA GENE EXPRESSION AS A MARKER IN COLORECTAL CANCER

Thesis

Submitted for Partial Fulfillment of Master degree (M.SC.) in Clinical and Chemical Pathology

Presented by

Manar Mahmoad Abdel-Aziz Hussein

M.B., B.Ch. Cairo University

Supervisors

Prof. Dr. Badawy Mohamed Badawy El-Kholy

Professor of Clinical and Chemical Pathology Faculty of Medicine Cairo University

Dr. Naglaa Ali Hassan Zayed

Assistant Professor of Tropical Faculty of Medicine Cairo University

Dr. Mona Zaki Sherif Nasser

Lecturer of Clinical and Chemical Pathology Faculty of Medicine Beni-Suef University

> Faculty of Medicine Cairo University 2012

Acknowledgement

First and foremost, thanks to **ALLAH** the most kind, the most merciful and to whom any success is related.

No words can fulfill my deepest respect to **Prof. Dr. BADAWY MOHAMED BADAWY EL-KHOLY,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for his fatherly attitude, valuable guidance, scientific support and kind supervision.

I would like also to express my deepest respect to **Dr**. **NAGLAA ALI HASSAN ZAYED**, Assistant Professor of Tropical, Faculty of Medicine, Cairo University, for her supervision, continuous encouragement and guidance.

I would like to express my deepest gratitude to **Dr. MONA ZAKI SHERIF NASSER**, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Beni-Suef University, for the idea and plan of the study in addition to her reliable advice and kind supervision in every step in this work.

Many thanks to **Dr. DINA OMAR**, Assistant Professor of Pathology, Faculty of Medicine, Cairo University, who did the entire pathology work of the thesis.

To my family & my parents for their everlasting love, encouragement & sacrifices, this work would never have been completed

ABSTRACT

Background and Objectives:

The centrosome-associated kinase aurora A (AURKA) is involved in genetic instability and is over-expressed in several human carcinomas including colorectal cancer (CRC). It plays a critical role in cancer cell development, proliferation, motility and survival. It is suggested that the Aurora kinase A expression in colorectal cancer significantly increase, which may play an important role in development of colorectal cancer.

Design and Methods:

In this study, the expression of AURKA gene was analyzed in 15 malignant patients, 13 premalignant patients and 23 control patients. AURKA gene expression was analyzed using a Real-Time Quantitative Reverse-Transcriptase Polymerase Chain Reaction (RTQ-PCR) to examine the copy number gains and mRNA level of AURKA in CRC.

Results:

AURKA gene expression was highly expressed in (33.3%, 5 of 15 CRC studied patients) with (mean 213.4, P value=0.005) indicated highly significant difference between control, premalignant and malignant groups.

Conclusions:

These findings indicated that colorectal cancers exhibit different mechanisms of aurora A regulation and this may impact the efficacy of aurora-A targeted therapies.

Key words:

Colorectal cancer; AURKA, RTQ-PCR.

LIST OF CONTENTS

LIST OF FIGURES	i
LIST OF TABLES	iii
LIST OF ABBREVIATION	vi
INTRODUCTION	1
REVIEW OF LITERATURE	
CHAPTER 1	
CHAPTER II	24
MATERIALS AND METHODS	41
RESULTS	60
DISSCUSION	82
SUMMARY	90
REFERENCES	
ARABIC SUMMARY	118

LIST OF FIGURES

Figure	Description	Page
1	Anatomical and staging illustrations for colorectal cancer	4
2	Stagging of colorectal cancer	15
3	Domain organisation of Aurora kinases A–C	24
4	Schematic cell cycle diagram showing phases of cell cycle and checkpoints	27
5	Localization of Aurora-A and -B kinases during the cell cycle	28
6	Comparative localization of Aurora A and B	29
7	Regulation of Aurora-A activity by Ran–GTP and TPX2	34
8	Mechanisms of Aurora-A promoted tumorigenesis	35
9	The two step RT-PCR	42
10	Basics of the 5' Nuclease Assay	43
11	Coloured illustration of the RT & PCR assay	44
12	Amplification Plot shows higher level of expression in patients	55
13	Demographic features in patients groups according to sex	61
14	Family history of colorectal lesions in all patients groups	61
15	Percentage distribution of all patients as regards colonoscopy indication	62

i

16	Percentage distribution of all patients as regards type of sedation	63
17	Percentage distribution of all patients as regards colonoscopy findings	66
18	Percentage distribution of pathology	69
19	Comparison between control, premalignant and malignant groups as regards age	70
20	Comparison between non malignant and malignant groups as regards RQ of AURKA gene expression	72
21	Comparison between control, premalignant and malignant groups as regards RQ of AURKA gene expression	73
22	Comparison between control, premalignant and malignant groups as regards sex	74
23	Correlation between age and AURKA gene expression	75
24	Relation between sex and RQ of AURKA gene expression	76
25	Correlation between RQ of AURKA gene expression and tumor grade	77
26	Receiver Operating Characteristic (ROC)-curves (RQ)	79

LIST OF TABLES

Table	Description	Page
1	Symptoms associated with CRC	11
2	TNM Classification of Colorectal Cancer	16
3	Staging Systems for Colorectal Cancer	17
4	Adverse Prognostic Indicators in Colorectal Cancer	19
5	Aurora substrates/interacting proteins and mitotic processes	30,31
6	Aurora kinase inhibitors	37
7	The RT mix	49
8	Thermal profile of RT	50
9	PCR assay mix	53
10	Thermal profile of PCR	53
11	Demographic features in patients groups according to age, sex and family history	60
12	Percentage distribution of all patients as regards colonoscopy indication	62
13	Percentage distribution of all patients as regards type of sedation	63

Table	Description	Page
14	Percentage distribution of all patients as regards colonoscopy extent	64
15	Percentage distribution of all patients as regards colonoscopy findings	65
16	Anatomical site of colorectal lesions as determined by colonoscopy	67
17	Percentage distribution of pathology	68
18	Comparison between control, premalignant and malignant groups as regards age	70
19	RQ of AURKA gene expression in all studied patients	71
20	Comparison between non malignant and malignant groups as regards RQ of AURKA gene expression	71
21	Comparison between control, premalignant and malignant groups as regards RQ of AURKA gene expression	73
22	Comparison between control, premalignant and malignant groups as regards sex	74

Table	Description	Page
23	Correlation between age and RQ of AURKA gene expression in all studied patients	75
24	Relation between sex and RQ of AURKA gene expression in all patients	76
25	Correlation between RQ of AURKA gene expression and tumor grade.	77
26	Odds ratio of AURKA gene expression among studied group	78
27	Sample size	79
28	ROC-curve of AURKA gene expression among malignant and non malignant groups	80

LIST OF ABBREVIATION

ADRM1	Adhesion regulating molecule 1
AJCC	American Joint Committee on Cancer
AMPK	AMP-activated kinase
APC	Adenomatous polyposis coli
AURKA	Aurora kinase A
AURKA- CN	Aurora kinase A gene copy number
AXIN1	Axis inhibition protein 1
BAX	Bcl2-associated X protein
BRCA-1	Breast cancer 1
BUB1	Budding uninhibited by benzimidazoles 1 homolog
BUBR1	Bub1-related kinase
cDNA	Complementary DNA
cdc20	Cell division cycle 20 homolog
CDC25B	Cell division cycle 25 homolog B
C20orf24	Chromosome 20 open reading frame 24
Cdh1	Cadherin 1
CEA	Carcinoembryonic antigen
CENP-A	Centromere Protein -A
CGH	comparative genomic hybridization
CIN	Chromosomal Instability
CIMP	CpG island methylator phenotype
СРЕВ	Cytoplasmic polyadenylation element-binding protein isoform 1
CRC	Colorectal Cancer

CTNNB1	catenin (cadherin-associated protein), beta 1
DCC	Deleted in Colorectal Cancer
DCBE	Double contrast barium enema
DNA	Deoxyribose Nucleic Acid
dNTP	Deoxynucleotid triphosphate
Eg5	Kinesin-related motor protein
FGFR1	Fibroblast growth factor receptor 1
FLT3	Fms-related tyrosine kinase 3
FOBT	Fecal occult blood test
Gadd45a	Growth arrest and DNA-damage-inducible, alpha
GSEA	Gene set enrichment analysis
GWAS	Genome-wide association studies
Н3	Histone
HEF1	Enhancer of filamentation 1
histone H2A	Histone cluster 2
HURP	Hepatoma up-regulated protein homolog
IkBaLph a	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
INCENP	Inner centromere protein antigens
KEN	Kendrin
KRAS	Kirsten rat sarcoma viral oncogene homolog
LATS2	Large tumor suppressor, homolog 2
LCK	Lymphocyte cell-specific protein-tyrosine kinase
LIM protein	Lipophilic protein

MAPKA P-K1	Mitogen activated protein kinase-activated protein kinase 1
MCAK	Kinesin family member 2C
mCRC	metastatic colorectal cancer
MEK	MAP kinase-ERK kinase
MSI	Microsatellite Instability
MKK1	MAP kinase/ ERK kinase 1
MMR	mismatch repair
NKD1	Naked cuticle 1 homolog
NSCLC	Non-small cell lung carcinoma
PAK1	P21 protein (Cdc42/Rac)-activated kinase 1
P53-RB	P53- Retinoblastoma pathway
PCR	Polymerase chain reaction
PDGFRB	Platelet-derived growth factor receptor, beta polypeptide
РНК	Phosphorylase kinase
PI3K	Phosphoinositide 3-kinase
PLK1	Polo-like kinase 1
PP1-2A	Protein phosphatase 1-2A
PTEN	Phosphatase and tensin homolog
P- value	Probability value.
QMPSF	quantitative multiplex polymerase chain reaction of short fluorescent fragments
RASSF1 A	Ras association domain family member 1
RNPC1	RNA binding motif protein 38
RNA	Ribose Nucleic Acid
ROC	Receiver Operating Characteristic

RT-PCR	Reverse transcriptase-PCR
RTQ- PCR	Real-Time Quantitative Reverse-Transcriptase Polymerase Chain Reaction
SMAD2,4	Mad (D. melanogaster) homologs 2 and 4
SNPs	Single nucleotide polymorphisms
SPARC	Secreted protein, acidic, cysteine-rich (osteonectin)
SRC	Sarcoma viral oncogene
SSSCA1	Sjogren syndrome/scleroderma autoantigen 1
STK15	S/T kinase 15
TACC/ Maskin	Transforming, acidic coiled-coil containing protein 3
TCF7L2	Transcription factor 7-like 2
TGF-β	Transforming growth factor
TH1L	TH1-like (Drosophila)
TNM	Tumor,Node,Metastasis
TP53	Tumour protein p53
TPX2	Targeting protein for Xklp2
Wnt pathway	Wingless pathway