DESIGN AND DEVELOPMENT OF UNIT FOR EXTRACTING WHEAT GERM OIL

ABDEL-GAWAD MOHAMMED ABDEL-GAWAD SAAD

B.Sc. Agric. Sc. (Agric. Eng.), Menoufia University, 2000. M.Sc. Agric. Sc. (Agric. Eng.), Menoufia University, 2006.

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Sciences (Agricultural Mechanization)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

DESIGN AND DEVELOPMENT OF UNIT FOR EXTRACTING WHEAT GERM OIL

By

ABDEL-GAWAD MOHAMMED ABDEL-GAWAD SAAD

B.Sc. Agric. Sc. (Agricultural Engineering), Menoufiya University, 2000. M.Sc. Agric. Sc. (Agricultural Engineering), Menoufiya University, 2006

This Thesis for Ph.D. degree has been approved by: Dr. Ahmed El-Raie Emam Suliman Prof. of Agricultural Engineering, Faculty of Agriculture, Cairo University. Dr. Gamal Abdel-Tawab Abo-Ella El-Shatanovi Prof. of Food Science, Faculty of Agriculture, Ain Shams University Dr. Mahmoud Ahmed El-Nono Associate Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University. Dr. Mubarak Mohamed Mostafa Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

Date of Examination: / /2012.

DESIGN AND DEVELOPMENT OF UNIT FOR EXTRACTING WHEAT GERM OIL

By

ABDEL-GAWAD MOHAMMED ABDEL-GAWAD SAAD

B.Sc. Agric. Sc. (Agricultural Engineering), Menoufiya University, 2000. M.Sc. Agric. Sc. (Agricultural Engineering), Menoufiya University, 2006

Under the supervision of:

Dr. Mubarak Mohamed Mostafa

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University. (Principal Supervisor)

Dr. Mahmoud Ahmed El-Nono

Associate Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Taher Rashad Owies

Senior Researcher of Agricultural Engineering, Agricultural Engineering Research Institute (AEnRI).

ABSTRACT

Abdel-gawad Mohammed Abdel-gawad Saad: Design and Development of Unit for Extracting Wheat Germ Oil. Unpublished Ph.D. Thesis. Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2012.

An expelling machine for extracting oil from wheat germ was designed and fabricated to be suitable for young investors. The procedures include the design stages, construction and testing. The main machine components are: Hopper (feeding inlet); expellant unit and an electric motor. The power is transmitted by means of a set of pulleys; sprockets; V-belt; chain and speed reducer (gear box). The expelling unit consists of two screw expellant shafts with two expellant barrels.

The expelling machine evaluated at five screw speeds (25, 35, 45, 55, and 65 rpm); four levels of press head clearance (0.5, 1, 1.5, and 2 mm); studying influence of the preheating process (in the range of 60-70°C) by the water at different atmospheric steaming periods (0, 10, 20, and 30 min) to change the initial moisture content of raw material (13.2%) to different levels (15.4, 16.2, and 16.8%). and influence of heating stabilization process (9.5% of moisture content) on expelling machine performance to determine the best Machine capacity (kg/h); Oil recovery Residual productivity(L/h); Specific energy (%);oil (%);Oil consumption (kWh/kg_{feed}); and Barrel temperature(°C). also, determine the economic feasibility for developed expelling machine.

Results showed that the expeller could be pressed wheat germ on two stages to give a better performance at as following.

- 1- The maximum machine capacity (42.6 kg/h) was obtained from stabilized wheat germ (9.5% moisture content) at 2mm outlet clearance and 65 rpm of screw speed.
- 2- The maximum oil recovery (63%) was obtained from stabilized wheat germ (9.5% moisture content) at 0.5mm outlet clearance and 25 rpm of screw speed.

- 3- The maximum oil productivity (2.36 L/h) was obtained from stabilized wheat germ (9.5% moisture content) at 2mm outlet clearance and 65 rpm of screw speed.
- 4- The minimum SEC $(0.0304 \text{ kWh/kg}_{\text{feed}})$ was found from wheat germ (13.2% moisture content) at 2mm outlet clearance and 65 rpm of screw speed.
- 5- The minimum barrel temperature (51.1°C) was found from raw wheat germ (13.2% moisture content) at 2mm outlet clearance and 25 rpm of screw speed.

Keywords: Oil Extraction, Expelling machine Design, Wheat Germ Oil, Economic Feasibility.

ACKNOWLEDGEMENT

First and foremost I would like express my thanks to **Almighty ALLAH** on successful completion of this research work and thesis.

Allah Almighty had been so helpful in his blessings by giving me a prospect to toil under the esteem supervision of **Prof Dr. Mubarak** Mohamed Mostafa, Professor, Agricultural Engineering Dep., Faculty of Agriculture, Ain Shams University. I have no words to express my gratitude for his diligent cooperation, scrupulous support and cheering perspective during the entire degree program.

I deem it my utmost pleasure in expressing my gratitude with the insightful benedictions to **Dr. Mahmoud El-Nono**, Assistant Professor, Agricultural Engineering Dep., Faculty of Agriculture, Ain Shams University. His sympathetic attitude, parental guidance, scholarly suggestions and criticism indeed are incalculable wealth for me.

Thanks are due to **Dr. Taher Rashad Owies**, Senior Researcher, AEnRI, Dokki, for his moral help, and cooperation.

A stanch appreciation to **Dr. Osama Kadour,** Senior Researcher, Agricultural Engineering Research Institute (AEnRI), Dokki, for his cooperation in machine modification and experimental work. I am also grateful to **Dr. Nazeer El-Bialee**, Researcher, AEnRI, Dokki, for his brotherly advices and valued suggestions throughout the research project.

Thanks are due to my friend **Eng. Mohamed El-Didamony**, Ass. Researcher, AEnRI, Dokki, for his help, and cooperation

<u>FINALLY</u>, I wish to express my deepest appreciation to my family (spirit of my father), my mother, my wife, and my two children, for their continuous encouragement and support.

Abdel-Gawad Mohammad Saad

	CONTENTS	Page
	LIST OF TABLES	v
	LIST OF FIGURES	vi
	LIST OF SYMBOLS	ix
1.	INTRODCUTION	1
2.	REVIEW OF LITERATURES	3
2.1.	Wheat germ	3
2.1.1.	Grain Structure	4
2.1.2.	Germ Recovery	5
2.1.3.	Physical and mechanical properties of wheat germ	6
2.2.	Wheat Germ Oils (WGO)	7
2.2.1.	Wheat Germ Oil Content	8
2.2.2.	Wheat Germ Oil Properties.	9
2.2.3.	Fatty Acid Composition	10
2.2.4.	The importance of wheat germ oil and uses	12
2.3.	Pretreatment methods for extracting crude oil from wheat	
	germ.	15
2.3.1.	Stabilization process.	15
2.3.2.	Steaming process.	17
2.4.	Oil Extraction.	18
2.4.1.	Mechanical Extraction	18
2.4.1.1.	History and applications	18
2.4.1.2.	Hydraulic Pressing	20
2.4.1.3.	Expeller Extraction	21
2.4.1. 4.	Advantages and disadvantages of mechanical extraction	28
2.4.2.	Solvent Extraction	29
2.4.2.1.	Advantages and disadvantages of solvent extraction	32
2.4.3.	Extraction by Supercritical Carbon Dioxide	32
2.5.	Energy	34
2.6.	Machinery Costs	35
2.6.1.	Ownership costs	36
2.6.2.	Operating costs	36

3.	THEORETICAL CONSIDERATION	38
3.	Theoretical Detail Design Calculations	38
3.1.	Design of expeller machine	38
3.1.1.	Function	39
3.1.1.1.	Oil flow through cell wall pores.	39
3.1.1.2.	Oil flow in the inter-kernel voids.	40
3.1.1.3.	Consolidation of the oil wheat germ cake	40
3.2.	Important Design Inputs.	40
3.2.1	Hopper	40
3.2.2	Screw Shaft.	42
3.2.2.1	Screw Parameters	43
3.2.3.	Stress analysis	46
4.	MATERIAL AND METHODS	49
4.1.	MATERIALS	49
4.1.1.	Wheat Germ	49
4.1.2.	Expelling Machine Description	50
4.1.2.1.	Main frame	50
4.1.2.2.	Hopper	52
4.1.2.3.	Barrel (Cage)	52
4.1.2.4.	Screw Shaft	55
4.1.2.5.	Flange	57
4.1.2.6.	Conical choke mechanism for cake drainage	58
4.1.2.7.	Power transmission	60
4.2.	DEVICES AND MEASURING INSTRUMENTS	61
4.2.1.	Angle of repose meter	61
4.2.2.	Tachometer	61
4.2.3.	Clamp meter	62
4.2.4.	Drying oven	62
4.2.5.	Infrared thermometer	63
4.2.6.	Heat stabilization unit	63
4.2.7.	Atmospheric steaming unit	64
4.3.	METHODS	65

4.3.1.	Measuring true density, and bulk density of wheat germ						
4.3.2.	Repose angle of wheat germ						
4.3.3.	Experimental treatments						
4.3.3.1.	Atmospheric steaming process						
4.3.3.2.	Stabilization of wheat germ						
4.3.4.	Determination of moisture content						
4.3.5.	Machine capacity (kg feed/h)						
4.3.6.	Determination of oil recovery (%)						
4.3.7.	Determination of residual oil percentage						
4.3.8.	Oil productivity						
4.3.9.	Total specific Energy Consumption (SEC)						
4.3.10.	Barrel temperature						
4.3.11.	Cost estimation						
4.3.12.	Economic feasibility						
5.	RESULTS AND DISCUSSION						
5.1.	Effect of atmospheric steaming process for wheat germ on						
	machine capacity (kg feed/h)						
5.2.	Effect of heating treatment (stabilization process) for wheat						
	germ on machine capacity (kg feed/h)						
5.3.	Effect of atmospheric steaming process for wheat germ on oil						
	recovery (%)						
5.4.	Effect of heating treatment (stabilization process) for wheat						
	germ on oil recovery (%)						
5.5.	Effect of atmospheric steaming process for wheat germ on						
	residual oil (%)						
5.6.	Effect of heating treatment (stabilization process) for wheat						
	germ on residual oil (%)						
5.7.	Effect of atmospheric steaming process for wheat germ on oil						
	productivity, (L/h)						
5.8.	Effect of heating treatment (stabilization process) for wheat						
	germ on oil productivity, (L/h)						
5.9.	Effect of atmospheric steaming process for wheat germ on						

	ANNEX	-
7.	REFERANCES	1
6.	SUMMARY AND CONCULUSION	1
5.14.	Economic feasibility of the developed expelling machine	1
5.13.	Oil extraction operation costs]
	germ on barrel temperature, °C	1
5.12.	Effect of heating treatment (stabilization process) for wheat	
	barrel temperature, °C	
5.11.	Effect of atmospheric steaming process for wheat germ on	
	germ on specific energy consumption (SEC) (kWh/kg feed)	
5.10.	Effect of heating treatment (stabilization process) for wheat	
	specific energy consumption (SEC) (kWh/kg feed)	

	LIST OF TABLES	Page
Table 2.1:	Wheat germ proximate composition	4
Table 2.2:	Physicochemical properties of wheat germ oil	10
Table 2.3:	Comparison of fatty acid composition of WGO extracted	
	with SC-CO ₂ and Soxhlet methods	11
Table 2.4:	Effect of processing on the phosphorous content of WGO	12
Table 3.1	Specification of suitable hopper dimensions of the expelling	
	machine	42
Table 3.2:	Specification of major component of the model screw press.	48
Table 4.1:	Specifications of the developed an expelling machine	59
Table 5.1:	Economic feasibility analysis for the developed expelling	
	machine for a small scale mechanical oil extract for wheat	
	germ	104

LIST OF FIGURES	Page
Fig. 2.1. Histological composition of wheat grain	5
Fig. 2.2: Structure of an oil body	8
Fig. 2.3. Compression curve relating the volume of material	
displaced along the distance of the barrel cage during	
screw pressing	23
Fig. 2.4. Illustration of principle of single-feed double stage	
compression used in the developed screw	26
Fig. 3.1. The design flow chart for mechanical equipments	38
Fig. 3.2. The main dimensions of screw shaft.	42
Fig. 3.3. Pitch and lead angle.	45
Fig. 3.4. Graph of height distribution through the screw shaft	45
Fig. 3.5. Graph of assumed pressure distribution on the screw	
shaft from the inlet to outlet.	45
Fig. 3.6. Free body diagram of the screw shaft	46
Fig. 4.1. Photograph of an expelling machine.	50
Fig. 4.2. Schematic digram of an expelling machine	51
Fig. 4.3. Design tree of the expelling machine	52
Fig. 4.4. Flat steel bars.	53
Fig. 4.5. Photograph of barrel rings with circular spacers	54
Fig. 4.6. second barrel rings unit with circular spacers	54
Fig. 4.7. The first screw.	55
Fig. 4.8. Photograph of second screw.	57
Fig. 4.9. The second screw.	57
Fig. 4.10. Conical choke mechanisms.	58
Fig. 4.11. Conical choke.	58
Fig. 4.12. Instruments for measuring angle of repose	61
Fig. 4.13. A photographic of speedometer	62
Fig.4.14. A photographic of clamp meter	62
Fig.4.15. A photographic of Infrared thermometer	63
Fig.4.16. Sketch and photograph of the rotary heating	
stabilization unit	64

Fig. 4.17	Soxhlet unit used for extracting the residual oil.	69
Fig.5.1.	Effect of screw speed and outlet clearance on	
	machine capacity Kg/h at different moisture	
	content levels	75
Fig.5.2.	Effect of screw speed and outlet clearance on	
	machine capacity Kg/h at different moisture	
	content levels.	7
Fig.5.3.	Effect of screw speed and outlet clearance on	
	machine capacity Kgh ⁻¹ at stabilized wheat germ	
	(9.5% moisture content).	79
Fig.5.4.	Effect of screw speed and outlet clearance on oil	
	recovery % at 13.2% moisture content	79
Fig.5.5.	Effect of screw speed and outlet clearance on oil	
	recovery % at different moisture content levels	8
Fig.5.6.	Effect of screw speed and outlet clearance on oil	
	recovery % at different moisture content levels	8
Fig.5.7.	Effect of screw speed and outlet clearance on	
	residual oil,% at different moisture content levels.	8
Fig.5.8.	Effect of screw speed and outlet clearance on	
	residual oil (%) at different moisture content	
	levels	80
Fig.5.9.	Effect of screw speed and outlet clearance on	
	residual oil (%) at stabilized wheat germ (9.5%	
	moisture content)	89
Fig.5.10.	. Effect of screw speed and outlet clearance on oil	
	productivity (L/h) at 13.2% moisture content.	89
Fig.5.11.	. Effect of screw speed and outlet clearance on oil	
	productivity (L/h) at different moisture content	
	levels.	9
Fig.5.12.	Effect of screw speed and outlet clearance on oil	
	productivity (L/h) at different moisture content	
	levels.	9.

Fig.5.13.	Effect	of	screw	speed	and	outlet	clea	rance	on	
	specific	eı	nergy	consum	ption	(kWl	n/kg	feed)	at	
	differen	t mo	isture c	content le	evels.					94
Fig.5.14.	Effect	of	screw	speed	and	outlet	clea	rance	on	
	specific	eı	nergy	consum	ption	(kWl	n/kg	feed)	at	
	differen	t mo	isture c	content le	evels.		• • • • •	· · ·		97
Fig.5.15.	Effect	of	screw	speed	and	outlet	clea	rance	on	
	specific	eı	nergy	consum	ption	(kWl	n/kg	feed)	at	
	stabilize	ed w	heat ge	rm (9.5%	6 mois	sture co	ntent)		98
Fig.5.16.	Effect	of	screw	speed	and	outlet	clea	rance	on	
	barrel	tem	peratur	re (°C)	at	differ	ent	moist	ure	
	content	leve	ls							98
Fig.5.17.	Effect	of	screw	speed	and	outlet	clea	rance	on	
	barrel	tem	peratur	re (°C)	at	differ	ent	moist	ure	
	content	leve	ls							101
Fig.5.18.	Effect	of	screw	speed	and	outlet	clea	rance	on	
	barrel	tem	peratur	re (°C)	at	differ	ent	moist	ure	
	content	leve	ls					• • •		102

LIST OF SYMBOLS

	LIST OF SYMBOLS
V	The flow rate of fluid, m ³ /sec.
R	Pore radius, m
ΔP	Pressure drop across a pore of length, Pa
L	Pore length, m
μ	Coefficient of viscosity, Pa.sec
L_p	Hydraulic conductivity of plasmodesmate, m ³ /sec. Pa
q	The flow rate of fluid
k	The coefficient of permeability
ho	Fluid density
g	Gravitational acceleration
Δu	Hydraulic gradient in the fluid (pressure difference Δu over
Δz	distance ΔZ).
$\sigma_{_t}$	Total applied pressure,
$\sigma_{_i}$	Kernel pressure; the pressure carried by the medium skeleton
U	Inter-kernel fluid pore pressure; the pressure carried by the
	medium fluid
Q_{T}	Theoretical volumetric flow rate of wheat germ, cm ³ /h.
ṁ	The maximum required mass flow rate
$ ho_{ m g}$	Wheat germ bulk density, g/cm ³
η_f	Feeding efficiency
η_v	Hopper volume efficiency
t_{int}	Time interval between filling and re-filling up the hopper
\mathbf{Q}_{act}	Actual volumetric flow rate of wheat germ, cm ³ /h
V_{H}	The hopper actual volume, cm ³
D_h	Upper hole diameter of the hopper, cm.
h_h	Height of hopper, cm.
X	Sidelong length of the hopper, cm
θ	The inclination angle of hopper
φ	The repose angle.
P	Screw pitch
N	Number of turns of screw.