Spectrophotometric and potentiometric determination of carbamazepine, mosapride citrate and chlorpromazine hydrochloride

Presented by

Sally El-Sayed Ahmed El-Ashery (B.Sc. Degree, Chemistry, Cairo University 2008)

A Thesis Submitted To Faculty of Science

In the partial fulfillment of the requirements for the M.Sc Degree (Analytical Chemistry)

Submitted To

Chemistry Department Faculty of Science Cairo University

(2011)

APPROVAL SHEET FOR SUBMISSION

Title of [M. Sc] Thesis: Spectrophotometric and potentiometric determination of carbamazepine, mosapride citrate and chlorpromazine hydrochloride.

Name of candidate: Sally El-Sayed Ahmed El-Ashery

This thesis has been approved for submission by the supervisors:

1- Prof. Dr. Mohamed Abd El-Gawad Zayed

Signature:

2- Prof. Dr. Mohamed Mohamed Omar

Signature:

3- **Dr.** Eman Yossri Zaki

Signature:

Prof. Dr. Mohamed A. Badawy.

Chairman of Chemistry Department Faculty of Science- Cairo University

Acknowledgement

First and foremost I want to thank Allah Almighty, the most beneficent, unlimited and continuous blessing on me, and for all gifts he gave to me. I wish to express my respectful thanks and full gratitude to prof. Dr. Mohamed Abd El-Gawad Zayed, Professor of Analytical chemistry, prof. Dr. Mohamed Mohamed Omar and prof. Dr. Gehad G. Mohamed, Professor of Inorganic and Analytical chemistry, Chemistry Department, Faculty of Science, Cairo University, for this research project, valuable guidance and fruitful comments for their perfect supervision and continuous support, which were indispensable to the completion of this work.

I would like also to express my profound gratitude to **Dr. Eman Y.Z. Frag**, Lecturer of Analytical Chemistry, Chemistry Department, Faculty of Science, Cairo University for her valuble contribution and perfect guidance during the whole work.

Finally, I would like to thank my family in supporting me during my studies and urging me on. My deepest appreciation is extended to my great my father, my mother, my sister and Arwa for their constant support, who were the source of calm and comfort.

Sally El-Sayed Ahmed

ABSTRACT

Name: Sally El-Sayed Ahmed El-Ashery

Title of the thesis: Spectrophotometric and potentiometric determination of carbamazepine, mosapride citrate and chlorpromazine hydrochloride

Degree: (M.Sc) published M.Sc of Science Thesis, Faculty of Science-Cairo University, 2011.

This work has been carried out to investigate:

- 1- Spectrophotometric determination of carbamazepine (CBZ) drug in pure and in pharmaceutical preparations through the ion-pair formation reaction with Mo(V)-thiocyanate binary complex.
- **2-** Spectrophotometric determination of mosapride citrate (MOC) via charge transfer complex formation between MOC (electron donor) and DDQ (π -acceptor) reagent. Also spectrophotometric determination of MOC through the ion-pair formation reaction with some dyestuffs such as bromothymol blue (BTB) and bromocresol green (BCG) reagents.
- **3-** Development of carbon paste ion-selective electrode for the determination of chlorpromazine HCl (CPZ.HCl) drug. The work has focused on the fabrication of ion selective electrodes for determination of the drug under investigation using potentiometric titration with sodium tetraphenylborate. The performance of such sensor in the potentiometric determination of CPZ.HCl is compared with those of PVC membrane, coated wire and coated graphite electrodes.

Keywords: carbamazepine and mosapride citrate, ion-pair formation, charge transfer, spectrophotometry, chlorpromazine hydrochloride, potentiometric titration.

Supervisors:

Signature

- 1- Prof. Dr. Mohamed Abd El-Gawad Zayed
- 2- Prof. Dr. Mohamed Mohamed Omar
- 3- Dr. Eman Yossri Zaki

Prof. Dr. Mohamed A. Badawy

Chairman of Chemistry Department Faculty of Science- Cairo University

Content

Subject	Page No.
ACKNOWLEDGEMENT	
AIM OF THE PRESENT WORK	
CHAPTER I: LITERATURE SURVEY	
I.1. Introduction	1
I.2. Literature survey on carbamazepine	1
I.2.1. Mode of action.	2
I.2.2. Uses	3
I.2.3. Side effects.	3
I.2.4. Synthesis.	4
I.2.5. Methods of analyses.	4
2.5.1. Spectrophotometric methods	4
2.5.2. Chromatographic methods.	5
I.3. Literature survey on mosapride citrate	9
I.3.1. Methods of analyses.	9
3.1.1. Spectrophotometric methods	9
I.4. Literature survey on chlorpromazine HCl	12
I.4.1. Methods of analyses.	13
4.1.1. Spectrophotometric methods	13
4.1.2. Chromatographic methods	15
4.1.3. Electrochemical methods	18
I.5. An introduction on electroanalytical chemistry	20
I.6. Ion selective electrodes	21
I.7. Types of ion-selective electrodes	21
5.1. Homogeneous solid state membrane electrodes	22
5.2. Liquid state electrodes	23
5.2.1. Liquid membrane electrodes	23

5.2.2. Polyvinyl chloride (PVC) membrane electrodes	25
5.2.2.1. PVC-membrane electrode with internal reference solution	25
5.2.2.2. Solid contact ion selective electrodes	26
5.2.2.2.1. Coated wire ion selective electrodes	27
5.2.2.2. Graphite rod electrodes	28
5.3. Heterogeneous solid state membrane electrodes	29
5.3.1. Carbon paste electrodes	29
CHAPTER II: EXPERIMENTAL	
II.1. Materials	32
1.1. Pharmaceutical preparations	33
II.2. Solutions.	33
II.3. Equipments.	34
II.4. Procedures.	35
II.4.1. Spectrophotometric determination of CBZ	35
II.4.1.1. Spectrophotometric studies on the reaction of CBZ with	
Mo(V)-thiocyanate reagent	35
4.1.2.1. Selection of suitable wavelength	35
4.1.1.2. Effect of time and temperature	35
4.1.1.3. Effect of organic solvents	36
4.1.1.4. Effect of organic solvent extraction power	36
4.1.1.5. Effect of Mo(VI) ion concentration	36
4.1.1.6. Effect of ascorbic acid concentration	36
4.1.1.7. Effect of ammonium thiocyanate concentration	37
4.1.1.8. Effect of acidity	37
4.1.1.9. Stoichiometric ratio.	37
(i) The continuous variation method (cvm)	37
(ii) The molar ratio method (mrm)	38
4.1.1.10. Spectrophotometric determination of CBZ using	
Mo(V) thiocyanate reagent in acidic medium	38
1.10.1. Validity of Beer's law	38

1.10.2. Between-day measurements	38
4.1.2.11. Spectrophotometric determination of CBZ in its	
pharmaceutical preparation	39
II.4.2. Spectrophotometric determination of MOC	39
II.4.2.1. Parameters affecting spectrophotometric determination of	
MOC drug using dyestuffs reagents	39
4. 2.1.1. Selection of optimum wavelength	39
4.2.1.2. Effect of temperature and time of reaction	39
4.2.1. 3. Effect of organic solvents	40
4.2.1.4. Effect of organic solvent extraction power	40
4.2.1.5. Effect of pH	40
4.2.1.6. Effect of buffer	40
4.2.1.7. Effect of buffer concentration	40
4.2.1.8. Effect of dyestuffs reagent (BTB or BCG) concentration	41
4.2.1.9. Determination of the stoichiometry of the reaction	41
(i) The continuous variation method (cvm)	41
(ii) The molar ratio method (mrm)	42
4.2.1.10. Spectrophotometric determination of MOC drug using	
BTB and BCG reagents	42
(i) Validity of Beer's law	42
(ii) Between-day measurements	43
4.2.1.11. Determination of MOC drug in its pharmaceutical	
preparation	43
II.4.2.2. Parameters affecting spectrophotometric determination of	
MOC drug using DDQ reagent	43
4. 2.2.1. Selection of optimum wavelength	43
4.2.2.2. Effect of time and temperature	44
4.2.2.3. Effect of organic solvents	44
4.2.2.4. Effect of DDQ concentrations	44
4.2.2.5. Stoichiometric ratio of the CT- complex formed	44

(i) The continuous variation method (cvm)	44
(ii) The molar ratio method (mrm)	44
4.2.2.6. Spectrophotometric determination of MOC with DDQ reagent	45
(i) Validity of Beer's law	45
(ii) Between-day measurements	45
4.2.2.7. Spectrophotometric determination of MOC in some	
pharmaceutical preparations	45
II.4.3. Determination of CPZ.HCl using ion selective electrode	46
4.3.1. Preparation of carbon paste electrode (CPE)	46
4.3.2. Preparation of coated wire and coated graphite electrodes	48
4.3.3. Preparation of PVC membrane electrode with an internal	
reference solution	50
4.3.4. Construction of the calibration graphs	52
4.3.5. Effect of soaking	52
4.3.6. Effect of the titrant.	
4.3.7. Effect of pH.	52
4.3.8. Effect of temperature	53
4.3.9. Selectivity of the developed sensor	53
4.3.10. Effect of concentration of CPZ.HCl	53
4.3.11. Potentiometric determination of CPZ.HCl in the pharmaceutica	.1
sample	53
CHAPTER III: RESULTS AND DISCUSSION	
III.1. Spectrophotometric determination of CBZ drug through	
ion-pair formation with Mo(V)-thiocyanate reagent	55
1.1. Determination of the suitable wavelength (λ_{max})	
1.2. Effect of time.	
1.3. Effect of temperature	56
1.4. Effect of extracting solvents	
1.5. Effect of organic solvent extraction power	58
1.6 Effect of molyhdenum reagent concentration	59

1.7. Effect of ascorbic acid	60
1.8. Effect of ammonium thiocyanate concentration	60
1.9 Effect of acidity	62
1.10. Stoichiometry of the formed ion–pair	64
1.11. Validity of Beer's law	66
1.12. Between-day measurements	67
1.13. Spectrophotometric determination of CBZ in pharmaceutical	
preparations using Mo(V)-thiocyanate reagent	69
III.2. Spectrophotometric determination of MOC drug using	
BTB and BCG reagents	70
2.1. Determination of the suitable wavelength (λ_{max})	70
2.2. Effect of time	71
2.3. Effect of temperature	72
2.4. Effect of extracting solvents	73
2.5. Effect of organic solvent extraction power	75
2.6. Effect of suitable buffer	75
2.7. Effect of acidity of suitable buffer	76
2.8. Effect of volume of buffer	77
2.9. Effect of reagent concentration	77
2.10. Stoichiometry of the formed ion–pairs	78
2.11. Validity of Beer's law in the determination of MOC drug	
using BTB and BCG reagents	81
2.12. Between-day measurements	85
2.13. Spectrophotometric determination of MOC drug in pharmaceuti	cal
preparations using BTB and BCG reagents	85
III.3. Spectrophotometric determination of MOC drug via charge	
transfer (CT) complex formation	87
3.1. Absorption spectrum	88
3.2. Effect of time.	89
3.3. Effect of temperature	90

3.4. Effect of solvent.	90
3.5. Effect of reagent concentration	92
3.6. Stoichiometry of the CT complex	92
3.7. Spectrophotometric determination of MOC using DDQ reagent	95
3.7.1. Validity of Beer's law	95
3.7.2. Between-day determination of MOC	97
3.7.3. Spectrophotometric determination of MOC drug in pharmaceutical	
preparation	98
III.4.Ion selective electrode	100
Elemental analysis	100
4.1. Calibration of the electrode	100
4.2. Effect of soaking.	101
4.3. Effect of plasticizer type	104
4.4. Electrode performance	106
4.4.1. Comparison between CPEs and PVC membrane electrodes	106
4.4.2. Comparison between CPEs and both CWE and CGE	108
4.5. Life time	111
4.6. Potentiometric titration	122
4.6.1. Effect of titrant.	122
4.6.2. Effect of pH	124
4.6.3. Effect of temperature of the test solution	125
4.6.4. Selectivity of CPE	126
4.7. Effect of concentration of CPZ.HCl	128
4.8. Potentiometric determination of CPZ.HCl drug in pharmaceutical	
preparation	128
CONCLUSION	131
SUMMERY	133
REFERENCES.	138
ARABIC SUMMER	

LIST OF TABLES

Table No.		Page
Table No.		No.
	The absorbance and molar absoptivity (ε) values	
Table (1)	for the determination of CBZ using Mo(V)-	58
	thiocyanate in different solvents.	
Table (2)	The absorbance and molar absobitivity (ε) values	63
Table (2)	of CBZ in different acids.	03
	Analytical parameters for the determination of	
Table (3)	CBZ drug by the proposed method using Mo(V)-	67
	thiocyanate reagent.	
	Between-day precision of the determination of	
Table (4)	CBZ drug by the proposed method using Mo(V)-	69
	thiocyanate reagent.	
	Spectrophotometric determination of CBZ in	
Table (5)	different pharmaceutical preparations by the	70
	proposed and official methods.	
	The absorbance and molar absorptivity (ε) values	
Table (6)	for the determination of MOC drug using BTB and	74
	BCG reagents in different solvents.	
Table (7)	Analytical parameters for the determination of	
	MOC drug using BTB and BCG reagents.	84
Table (8)	Between–day precision for the determination of	
	MOC drug using BTB and BCG reagents.	85
	Determination of MOC drug in pharmaceutical	
Table (9)	preparation using BTB and BCG reagents.	86
	proposition doing DTD and DCG reagents.	

Table No.		Page
Table No.		No.
Table (10)	The molar absorptivity values of MOC -DDQ CT	91
	complex in different solvents.	91
	Spectral characteristics of MOC-DDQ CT coloured	
Table (11)	reaction product and the analytical characteristics	97
	(accuracy and precision) of this reaction.	
Table (12)	Between-day precision of the determination of	98
1 able (12)	MOC drug using DDQ reagent.	70
	Spectrophotometric determination of MOC drug in	
Table (13)	pharmaceutical preparation using DDQ and official	99
	method.	
	Effect of soaking on the CPE performance in the	
Table (14)	potentiometric titration of 3 mL of 10 ⁻² mol L ⁻¹	102
	CPZ.HCl with 10 ⁻² mol L ⁻¹ NaTPB.	
	Effect of the plasticizer type on the CPE	
Table (15)	performance in the potentiometic titration of 3 mL	104
	of 10^{-2} mol L ⁻¹ CPZ.HCl with 10^{-2} mol L ⁻¹ NaTPB.	
	The performance characteristics of different	
Table (16)	fabricated electrode in the potentiometric titration	106
1 abit (10)	of 3 mL 10 ⁻² mol L ⁻¹ CPZ.HCl with 10 ⁻² mol L ⁻¹	100
	NaTPB.	
Table (17)	Life time of the carbon paste electrode in the	
	potentiometric titration of 3 mL of 10 ⁻² mol L ⁻¹	112
	CPZ.HCl with 10 ⁻² mol L ⁻¹ NaTPB using DBP.	
	Life time of the carbon paste electrode in the	
Table (18)	potentiometric titration of 3 mL of 10 ⁻² mol L ⁻¹	114
	CPZ.HCl with 10 ⁻² mol L ⁻¹ NaTPB using TCP.	

Table No.		Page
Table No.		No.
	Life time of the carbon paste electrode in the	
Table (19)	potentiometric titration of 3 mL of 10 ⁻² mol L ⁻¹	116
	CPZ.HCl with 10 ⁻² mol L ⁻¹ NaTPB using <i>o</i> - NPOE.	
	Life time of the carbon paste electrode in the	
Table (20)	potentiometric titration of 3 mL of 10 ⁻² mol L ⁻¹	118
	CPZ.HCl with 10 ⁻² mol L ⁻¹ NaTPB using DOS.	
	Life time of the carbon paste electrode in the	
Table (21)	potentiometric titration of 3 mL of 10 ⁻² mol L ⁻¹	120
	CPZ.HCl with 10 ⁻² mol L ⁻¹ NaTPB using DOP.	
	Potentiometric titration of 3 mL of 10 ⁻² mol L ⁻¹	
Table (22)	CPZ.HCl with different titrants using CPE:	122
1 able (22)	a) 1×10 ⁻² mol L ⁻¹ NaTPB, b) 3.3×10 ⁻³ mol L ⁻¹ PTA,	122
	c) 3.3×10 ⁻³ mol L ⁻¹ PMA, d) 1×10 ⁻² mol L ⁻¹ RN	
Table (23)	Potentiometric selectivity coefficient of TCP	127
1 able (23)	plasticized CPE.	127
Table (24)	Potentiometric determination of 1x10 ⁻² mol L ⁻¹	
	CPZ.HCl drug in pharmaceutical formulation	130
	against 1x10 ⁻² mol L ⁻¹ NaTPB using CPE	130
	plasticized with TCP, o-NPOE and DBP.	

LIST OF FIGURES

Figure No.		Page No.
Figure (1)	Structure of carbamazepine.	1
Figure (2)	Synthesis of carbamazepine.	4
Figure (3)	Structure of mosapride citrate.	9
Figure (4)	Structure of chlorpromazine HCl.	12
Figure (5)	A typical carbon paste holder.	47
Figure (6)	A typical coated wires ISE.	49
Figure (7)	A Typical PVC-membrane electrode with internal reference solution.	51
Figure (8)	Absorption spectrum of Mo(V)-thiocyanate ion pair with CBZ drug.	55
Figure (9)	Effect of time on the ion-pair formation between CBZ and Mo(V)-thiocyanate at $\lambda_{max} = 470$ nm.	56
Figure (10)	Absorbance-temperature curve of Mo(V)-thiocyanate-CBZ ion-pair.	57
Figure (11)	Effect of using different solvents for the extraction of Mo(V)– thiocyanate–CBZ ion–pair.	58
Figure (12)	Effect of solvent extraction power of dichloroethane on the spectrum of the ion pair at $\lambda_{max} = 470$ nm.	59
Figure (13)	The effect of variable concentrations of different reactants on the ion-pair formation. (a) Effect of Mo(VI); (b) Effect of ascorbic acid; (c) Effect of (SCN).	61
Figure (14)	Effect of hydrochloric acid concentration [4 mol L ⁻¹] on the ion pair formation at $\lambda_{max} = 470$ nm.	63

Figure (15)	Stoichiometric ratio of the reaction of Mo(V)— thiocyanate with CBZ at $\lambda_{max} = 470$ nm using (a) molar ratio and (b) continuous variation methods.	65
Figure (16)	The validity of Beer's law for the determination of CBZ.	68
Figure (17)	Absorption spectra of MOC ion-pairs using (a) BTB and (b) BCG reagents.	71
Figure (18)	Effect of time on the spectra of the ion pairs of MOC with BTB and BCG reagents.	72
Figure (19)	Effect of temperature on the spectra of the ion-pairs of MOC with BTB and BCG reagents.	73
Figure (20)	Effect of different types of solvents on the spectra of the ion-pairs of MOC drug using BTB and BCG reagents.	74
Figure (21)	Effect of solvent extraction power on the spectra of the ion pairs.	75
Figure (22)	Effect of different buffers (pH= 3 and 4 for BTB and BCG reagent, respectively) on the spectra of the ion-pairs of MOC drug using BTB and BCG reagents.	76
Figure (23)	Effect of acidity of universal buffer on the spectra of the ion-pairs of MOC drug using BTB and BCG reagents.	76
Figure (24)	Effect of volume of universal buffer (mL) on the spectra of the ion-pairs of MOC drug using BTB and BCG reagents.	77
Figure (25)	Effect of BTB or BCG concentrations on the spectra of the ion pairs of MOC drug.	78
Figure (26)	Stoichiometric ratio of the reaction of MOC with (a) BTB and (b) BCG reagents using molar ratio method.	80