EFFECT OF SOME AGRONOMIC TREATMENTS ON STEVIA (STEVIA REBAUDIANA, BERTONI) YIELD AND QUALITY IN EGYPT

BY

AHMED EI-SAYED ATTIA

B.Sc. Agric. Sc.(Agronomy), Ain Shams University, (1993) M.Sc. Agric. Sc. (Agronomy), Ain Shams University, (2000)

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Agronomy)

Department of Agronomy Faculty of Agriculture Ain Shams University

EFFECT OF SOME AGRONOMIC TREATMENTS ON STEVIA (STEVIA REBAUDIANA, Bertoni) YIELD AND QUALITY IN EGYPT

\mathbf{BY}

AHMED EI-SAYED ATTIA

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, (1993) M.Sc. Agric. Sc. (Agronomy), Ain Shams University, (2000)

Under the supervision of:

Prof. Dr. Olfat H. El-Bagoury

Prof. Emeritus of Agronomy, Dep. of Agronomy, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Ashraf M. Zaki

Assistant Prof. of Agronomy, Dep. of Agronomy, Faculty of Agriculture, Ain Shams University

Prof. Dr. Abd-Elwahab I. Allam

Head of Research Emeritus, Sugar Crops Research Institute, Agricultural Research Center

Approval Sheet

EFFECT OF SOME AGRONOMIC TREATMENTS ON STEVIA (STEVIA REBAUDIANA, Bertoni.) YIELD AND QUALITY IN EGYPT

BY

AHMED EL-SAYED ATTIA

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, (1993) M.Sc. Agric. Sc. (Agronomy), Ain Shams University, (2000)

This thesis for Ph.D. degree has been approved by:

Prof. Dr. Ahmed N. El – Said Attia Prof. of Agronomy, Faculty of Agriculture, Mansoura University Prof. Dr. Ramadan Th. Abd Rabo Prof. of Agronomy, Faculty of Agriculture, Ain Shams University Prof. Dr. Olfat H. El-Bagoury Prof. Emeritus of Agronomy, Faculty of Agriculture, Ain Shams University

Date of Examination: 6 / 9 / 2005

ACKNOWLEDGMENT

The author wishes to express his deepest and sincere appreciation to **Professor Dr. Olfat H. El-Bagoury,** former head of Agronomy Department – Faculty of Agriculture – Ain Shams Univ. for her valuable instruction, supervision, criticism and encouragement during the course of investigation.

The author wishes to express his gratitude to **Professor Dr. Abdel Wahab. I. Allam,** former head of Sugar Crops

Research Institute – Agricultural research Center, for his close supervision, criticism and valuable advice throughout the investigation and preparation of the manuscript.

Deep appreciation and gratitude to **Dr. Ashraf M. Zaki**, lecturer of Agronomy Department – Faculty of Agriculture – Ain Shams Univ. for his supervision, valuable advice and constructive comments.

Deepest appreciation to Agronomy Department – Faculty of Agriculture – Ain Shams University for their help and instruction during the course of this thesis.

All thanks and gratitude to The Sugar Crops Research Institute – Agricultural Research Center for their valuable assistance through this study.

ABSTRACT

Ahmed El-Sayed Attia, Effect of some agronomic treatments on stevia (*Stevia rebaudiana*, Bertoni.) yield and quality in Egypt. Unpuplished Doctor of Philosophy Thesis, Agronomy Department, Fac. of Agric., Ain Shams Univ., 2005.

This study consisted of two field and two greenhouse experiments. Field experiments studied the effect of propagation methods, nitrogen fertilizer and their interaction on stevia plant yield and quality for plants during 2001/2002 and 2002/2003 seasons and ratoon crop of 2003/2004 season in five cuts of experiments each season. Greenhouse conducted in glasshouse to study the effect of stem cutting position, IBA application and their interaction on stevia through stem cutting propagation. The obtained results showed that in both plant crop and ratoon crop, root cutting propagated plants exceeded both seed and tissue culture propagated plants for all studied characters. Meanwhile, application of 40 kg N/fed/cut gave maximum values over both 0 (control) and 20 kg N/fed/cut. Root cutting propagated plants of the fifth cut that received 40 kg N/fed/cut gave the maximum values of leaves dry weight (1.13 t/fed for plant crop and 1.15 t/fed for ration crop), total leaves dry weight (4.39 t/fed/year for plant crop and 4.58 t/fed for ratoon crop), stevioside percentage (24.60 % for plant crop and 28.50 % for ration crop), stevioside yield (278.77 kg/fed for plant crop and 327.75 kg/fed for ration crop) and total stevioside yield (962.43 kg/fed/year for plant crop and 1035.58 kg/fed/year for ratoon crop). Maximum value of cutting survival percentage was obtained from basal cuttings treated with IBA concentration of 1000 ppm. (95.33 %) while the lowest value was obtained from tip cuttings with 0 ppm. IBA (70.00 %).

KEY WORDS

Stevia, propagation, fertilization, IBA, cutting and cutting position

CONTENTS	Page
Introduction	1
Review of literature	3
Materials and methods	12
Results and discussion	19
I- Effect of propagation method, nitrogen fertilization and their interaction	19
on of Stevia rebaudiana, Bertoni. Yield and quality	
1- Plant height	19
2- Number of branches /plant	23
3- Flowering plants percentage	27
4- No. of flowering branches/plant	30
5- Stem fresh weight	34
6- Stem dry weight	38
7- Leaves fresh weight	42
8- Leaves dry weight	45
9- Stevioside percentage	50
10- Stevioside yield	52
II- A comparison between 2002/2003 plant crop and its first ration crop (2003/2004)	56
1- Plant height	56
2- Number of branches /plant	59
3- Flowering plants percentage	63
4- No. of flowering branches/plant	66
5-Stem fresh weight	69
6- Stem dry weight	72
7- Leaves fresh weight	75
8- Leaves dry weight	79
9- Stevioside percentage	83
10- Stevioside yield	86
Effect of the interaction between propagation method and	88
nitrogen fertilization of plant crop and ratoon crop	
Effect of stem cutting position, IBA application and their	90
interaction on cutting success of Stevia rebaudiana, Bertoni.	
1- Effect of cutting position	90
2- Effect of IBA application	90
3- Effect of the interaction between cutting position and IBA	97
application	
SUMMARY	99
LITERATURE CITED	110

LIST OF FIGURES

Figure (1): Effect of propagation methods (A) and nitrogen fertilization (B) on	
plant height (cm.) (combined data of both seasons) during the five	21
cuts	
Figure (2): Effect of propagation methods (A) and nitrogen fertilization (B) on	
number of branches/plant (combined data of both seasons) during	25
the five cuts	
Figure (3): Effect of propagation methods (A) and nitrogen fertilization (B) on	
flowering plants percentage (combined data of both seasons) during	29
the five cuts	
Figure (4): Effect of propagation methods (A) and nitrogen fertilization (B) on	
number of flowering branches/plants (combined data of both	32
seasons) during the five cuts	32
Figure (5): Effect of propagation methods (A) and nitrogen fertilization (B) on	
stem fresh weight (ton/fed) (combined data of both seasons) during	36
the five cuts	30
Figure (6): Effect of propagation methods (A) and nitrogen fertilization (B) on	
stem dry weight (ton/fed) (combined data of both seasons) during the	40
	40
five cuts	
Figure (7): Effect of propagation methods (A) and nitrogen fertilization (B) on	
leaves fresh weight (ton/fed) (combined data of both seasons) during	44
the five cuts	
Figure (8): Effect of propagation methods (A) and nitrogen fertilization (B) on	
leaves dry weight (ton/fed) (combined data of both seasons) during	48
the five cuts	
Figure (9): Effect of propagation methods (A) and nitrogen fertilization (B) on	
plant height (cm.) (plant crop of 2002/2003 and ratoon crop of	58
2003/2004 seasons) during the five cuts	
Figure (10): Effect of propagation methods (A) and nitrogen fertilization (B) on	
number of branches/plant (plant crop of 2002/2003 and ratoon crop	61
of 2003/2004 seasons) during the five cuts	
Figure (11): Effect of propagation methods (A) and nitrogen fertilization (B) on	65
flowering plants percentage (plant crop of 2002/2003 and ratoon crop	05

of 2003/2004 seasons) during the five cuts	
Figure (12): Effect of propagation methods (A) and nitrogen fertilization (B) on	
number of flowering branches/plant (plant crop of 2002/2003 and	68
ratoon crop of 2003/2004 seasons) during the five cuts	
Figure (13): Effect of propagation methods (A) and nitrogen fertilization (B) on	
stem fresh weight (t/fed) (plant crop of 2002/2003 and ratoon crop of	
2003/2004 seasons) during the five cuts	71
Figure (14): Effect of propagation methods (A) and nitrogen fertilization (B) on	
stem dry weight (t/fed) (plant crop of 2002/2003 and ratoon crop of	74
2003/2004 seasons) during the five cuts	
Figure (15): Effect of propagation methods (A) and nitrogen fertilization (B) on	
leaves fresh weight (t/fed) (plant crop of 2002/2003 and ratoon crop	77
of 2003/2004 seasons) during the five cuts	
Figure (16): Effect of propagation methods (A) and nitrogen fertilization (B) on	
leaves dry weight (t/fed) (plant crop of 2002/2003 and ratoon crop of	81
2003/2004 seasons) during the five cuts	
Figure (17): Effect of propagation methods (A) and nitrogen fertilization (B) on	
stevioside percentage (plant crop of 2002/2003 and ratoon crop of	85
2003/2004 seasons) during the five cuts	
Figure (18): Effect of cutting position, IBA application and their interaction on	
survived cutting percentage and leaves fresh weight (g) of stevia	93
cuttings (combined data of both seasons)	
Figure (19): Effect of cutting position, IBA application and their interaction on	
leaves dry weight (g) and stem fresh weight (g) of stevia cuttings	94
(combined data of both seasons)	
Figure (20): Effect of cutting position, IBA application and their interaction on	
stem dry weight (g) and root fresh weight (g) of stevia cuttings	95
(combined data of both seasons)	
Figure (21): Effect of cutting position, IBA application and their interaction on	96
root dry weight (g) of stevia cuttings (combined data of both seasons).	90

Fig (1):Effect of propagation method (A) and nitrogen fertilization (B) on plant hieght (cm.) (combined data of both seasons) during the five cuts.

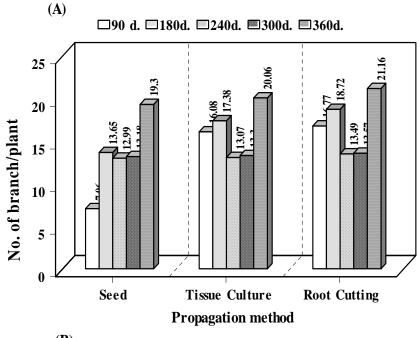



Fig (2):Effect of propagation method (A) and nitrogen fertilization(B) on number of branches/plant (combined data of both seasons) during the five cuts.

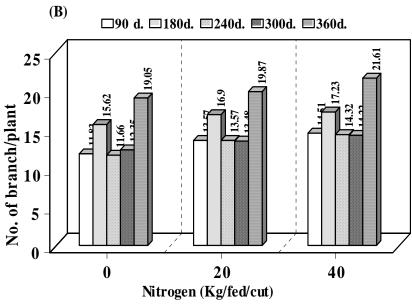
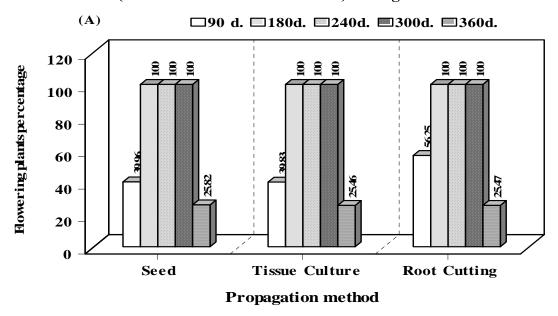



Fig (3):Effect of propagation method (A) and nitrogen fertilization (B) on flowering plants percentage (combined data of both seasons) during the five cuts.

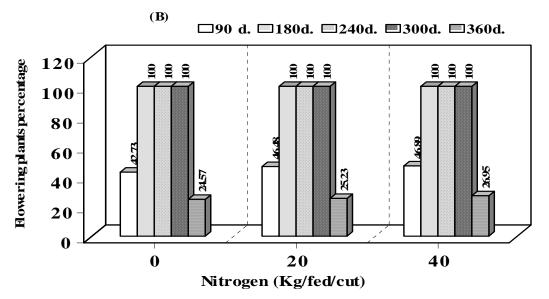


Fig (4):Effect of propagation method (A) and nitrogen fertilization (B) on number of flowering branches / plant (combined data of both seasons) during the five cuts.

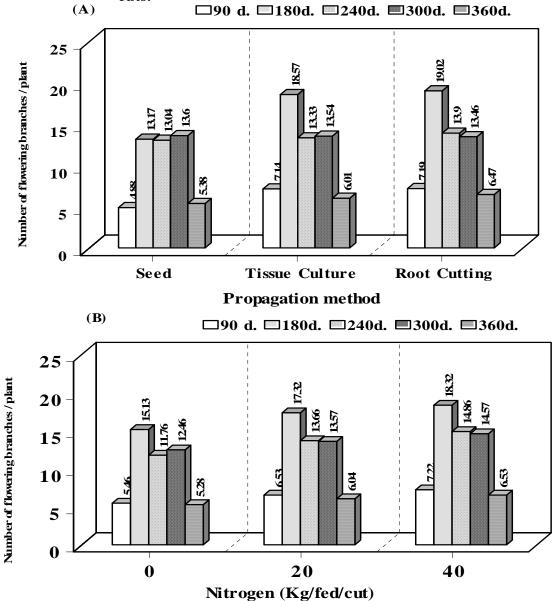
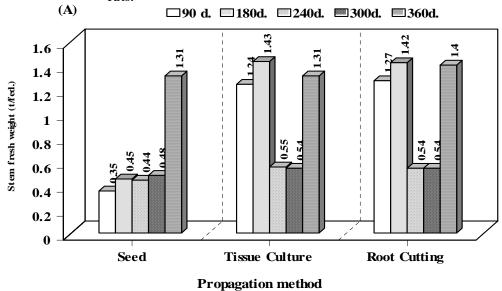



Fig (5):Effect of propagation method(A) and nitrogen fertilization (B) on stem fresh weight (t/fed.) (combined data of both seasons) during the five cuts.

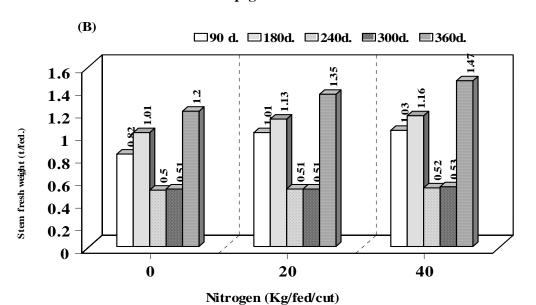
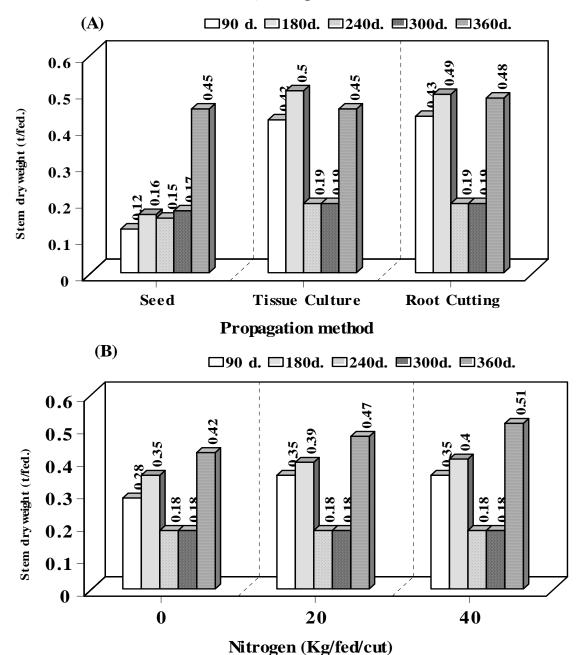



Fig (6):Effect of propagation method (A) and nitrogen fertilization (B) on stem dry weight (t/fed.) (combined data of both seasons)during the five cuts.

