Evaluation of Hepatitis C Virus Core Antigen Titre Performance In Comparison To HCV RNA RT-PCR In Diagnosis And Follow Up Of Hepatitis C Chronic Patients Treated with Pegylated Interferon & Ribavirin

Chesis

Submitted for Partial Fulfillment of Master Degree in Tropical Medicine

Presented By

Ahmed Fouad Helmy
M.B.B.CH. Ain Shams University

Supervised By

Prof. Sanaa Moharram Kamal

Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Prof. Eman Abdel-Moneam El Gohary

professor of Clinical Pathology
Faculty of Medicine - Ain Shams University

Dr. Dalia Mohammed Ghoraba

Lecturer of Tropical Medicine Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2012

LIST OF CONTENTS

Title	Page
List of Tables	I
List of Figures	II
List of Abbreviations	III-V
• Introduction	1
Aim of the Work	5
• Review of Literature	
o Chapter I: virology of hebatitis C	6
o Chapter II: HCV infection	15
o Chapter III: diagnostic procedures of HCV	31
o Chapter IV: HCV core antigen	54
o Chapter V: treatment of HCV	60
• Patients and Methods	86
Statistical analysis	97
• Results	100
• Discussion	127
• Summary	137
• Conclusions	140
• Recommendations	141
• References	143
Arabic Summary	

\mathcal{L} ist of \mathcal{F} igures

Fig	g. No Title	Page
	Review	
1.	Structure of RNA genome of hepatitis C virus	8
2.	Phylogenenetic analysis of E1 and NS5B region of	
	HCV genotype	9
3.	Natural history of HCV infection	19
4.	Different HCV antibody assay	34
5.	Response to treatment in patients with HCV genotype-1.	72
6.	Proposed algorithm for treatment of chronic hepatitis genotype 4	78
	Results	
1.	Response to PEG-IFN and Ribavirin Therapy	108
2. 0	On Treatment Response to PEG-IFN and Ribavirin	109
3. l	Kinetics of ALT During Therapy	110
4. l	Kinetics of HCV-RNA During Therapy	111
5. l	ROC curve of HCV core Antigen	114
6. l	Kinetics of HCV core Antigen during therapy	120
7.	Correlation between HCV core Ag (y axis) and HCV	
	RNA(X axis)	
8. 0	Correlation between HCV core Antigen and ALT levels	122
9.	Correlation between HCV core Antigen and Necroinflammatory scores (Grading score)	123
10.	Correlation between HCV core Antigen and histologic fibrosis scores (Grading score)	124
11.	A Kaplan Meier Curve showing the time to virologic response between study groups	125
12.	A Kaplan Meier curve showing the time to HCV core antigen decline	

LIST OF **TABLES**

Tab	. No Title	Page
	Review	40
1. G	uideline for HCV RNA testing	46
	Results	
	Baseline demographic and clinical characteristics of	
p	patients	102
2. E	Baseline blood picture in the study groups	104
3. E	Baseline liver functions of study patients	105
4. E	Baseline HCV RNA levels in the study groups	106
5. E	Baseline histologic findings of liver biopsy	107
6. E	Baseline HCV core Antigen in the study groups	112
	Estimated specificity of HCV core Antigen for a range of sensitivities	115
A	Diagnostic Performance Parameters of HCV core Antigen Performance ELISA using HCV RT PCR as gold standard	116
	Relationship between HCV core Antigen levels and HCV RNA titers among study subjects at baseline	118

LIST OF ABBREVIATIONS

5'UTR:	5 'Untranslated region
Aa:	Amino Acid
AASLD:	American association of
	liver disease
AFP:	Alpha feto protein
Ag:	Antigen
ALT:	Alanine Amine
	transferase
AST:	Aspartate Amine
	transferase
b-DNA:	Branded DNA
CA:	Core antigen
cDNA:	Complementary
	Deoxyribo nucleic acid
c-EVR:	Complete early
	virological response
CIA:	Chemiluminescent
	Assay
CIs:	Confidence Intervals
CT:	Computerized
	topographyG
CTLs:	Cytotoxic t.lymphocyte
CTM:	Cobas TaqMan
CVs:	Coefficients of Variation
DAAs:	Direct Acting antiviral
	agents
EIA:	enzyme immunoassay
ELISA:	Enzyme linked
	Immunosorbent assay
ESRD:	End Stage Renal
	Disease
ETR:	End of treatment
	response
EVR:	Early virological response

LIST OF ABBREVIATIONS (CONT...)

FDA:	Food and drug
	administration
G-GT:	Gamma –Glutayl
	transpeptidase
HAART:	Highly active antiretroviral
	therapy
HC cAg:	HCV –core antigen
HCC:	Hepatocellular carcinoma
HCV G4:	HCV genotype 4
HLA:	Human Leukocytic Antigen
HPS:	High Pure System
IFN:	Interferon
IgG:	Immunoglobulin G
IMPDH:	Inosine monophosphate
	dehydrogenase
IRES:	Internal ribosome entry site
IRMA:	Immunoradiometric assay
LIPA:	Line probe assay
MRI:	Magnetic resonance assay
NANBH:	Non A NON B hepatitis
NAT:	Nucleic acid technique
NHANES:	Nutrition examination survey
NS proteins:	Non structural protein
ORF:	Open reading frame
ORs:	Odds Ratio
PCR:	Polymerase chain reaction
PEG:	polyethylene glycol
p-EVR:	Partial early virological
	response
PT:	Prothrombin time
RIBA:	Recombinant Immunoblot
	assay
RNA:	Ribonucleic acid

LIST OF ABBREVIATIONS (CONT...)

RT-PCR:	Reverse transcriptase
	polymerase chain reaction
RVR:	Rapid virological response
SD:	Standard Deviation
SIA:	Strip Immunoassay
SVR:	Sustained virological
	response
Th2:	Type 2 t-helper cell
TMA:	Transcription mediated
	amplification
TSH:	Thyroid Stimulating
	Hormone
ULN:	Upper Limit Normal
UTR:	Untranslated region
WHO:	World Health organization

Acknowledgement

First and foremost thanks to "Allah" who granted me the ability to accomplish this work.

I wish to express my deep gratitude to **Prof. Dr.**Sanaa Moharam Kamal, Professor of Tropical Medicine,

Ain-Shams University, for her continuous encouragement

,generous recommendations, treasure time and effort, who

taught me a lot about how to be devoted to your work and

patients whatever the duties.

I am also very grateful to **Prof.Dr. Eman Abdel- Moneam El Gohary**, professor of clinical pathology, Ain
Shams University, for her kind guidance, valuable support
and greatest duties in finishing this work.

I would like to express my deepest thanks to Dr.

Dalia Mohamed Ghoraba, Assistant Professor of Tropical

Medicine, Ain Shams University, for kind cooperation during the work.

I am also so grateful for **prof.Dr. Samar Kasem** , professor of Biochemistry , Ain Shams University, for kind cooperation during the work.

I owe much to my colleagues for their support greatly appreciated.

I would like to thank all my family for their patience and support.

INTRODUCTION

The World Health Organization (WHO) estimated that worldwide 180 million people or 3% of the world's population is infected with hepatitis C virus (HCV) (WHO, 2000). In the United States, nearly 2% of the population is infected (Armstrong et al, 2006). In Europe, an estimated 4 million people are chronic HCV carriers with a prevalence of less than 0.1% in northern parts of Europe, increasing to >1% in the south (*Desenctos et al, 2003*). The prevalence of HCV infection is greater in Africa and Asia as infection rates exceed 5% (Lavanchy, 2009). Egypt has the highest prevalence of hepatitis C in the world with prevalence rates of 14 % of the population, equating to about 12 million infected Egyptians (Lavanchy, 2009; MOH, 2007).

HCV is a leading cause of chronic liver disease in many countries (Chen& Morgan, 2006). Acute HCV infection is asymptomatic and rarely recognized clinically. mostly Spontaneous viral clearance occurs in approximately one in four individuals with acute HCV (Micallef et al, 2006). The striking feature of HCV infection is its tendency toward

persistence and development of chronic hepatitis (Hoofnagle, **2002**). Some patients with chronic HCV are at increased risk of developing liver cirrhosis and hepatocellular carcinoma (HCC) and will eventually develop serious squeals (*Seeff*, 2007).

The diagnosis of HCV infection can be made by detecting either anti-HCV or HCV RNA. Detection of anti-HCV is recommended for routine testing of asymptomatic persons and should include use of both enzyme immunoassay (EIA). In some cases, supplemental or confirmatory testing with an additional, more specific antibody (i.e., RIBA) assay could be used, particularly in settings where detection of HCV RNA using reverse transcriptase polymerase chain reaction (RT-PCR) techniques are not provided. Antibody tests are not able to differentiate acute from chronic or resolved infection; however, the diagnosis of acute disease is suggested by seroconversion characterized by conversion from HCV negative antibody status to positive anti-HCV antibody status (de Medina M, Schiff ER, 1995).

The diagnosis of HCV infection can also be made through detection of HCV RNA using RT-PCR techniques. HCV RNA can be detected within one to two weeks after

exposure to the virus, weeks before the onset of ALT elevations or the appearance of anti-HCV (*Pawlotsky et al*,1999). In some patients, the detection of HCV RNA may be the only evidence of HCV infection. Quantitative assays for measuring the titer of HCV RNA, including a branched chain DNA assay and a quantitative PCR, are extensively used in monitoring the response of HCV patients to pegylated interferon and ribavirin therapy. Several different nucleic acid detection methods also have been developed to group isolates of HCV based on genotypes (Veillon, et al, 2003). Although polymerase chain reaction (PCR) assays for HCV RNA are available from several commercial laboratories on a research-use basis, the results may vary considerably between laboratories. Both false-positive and false-negative results can result from improper collection, handling and storage of test samples. In addition, HCV RNA may be detected intermittently during the course of infection, so a single negative PCR result is not conclusive. Furthermore, HCV-PCR is an expensive technique (Veillon, et al, 2003).

Since RNA detection is labor-intensive and expensive, several attempts have been made to replace HCV RNA detection or quantification by other markers. Recently, serum HCV core antigen (CA) has emerged as an enzyme-linked immunosorbent assay-based method capable of quantifying

hepatitis C virus (HCV) core antigen (CA) in serum (Gaudy, et al, 2005). Some studies have shown that HCV- CA could be an efficient new diagnosis marker for HCV infection that is more stable than HCV RNA and needs no particular precautions for preparation and sample storage (Tillmann, et al, 2005). Several kits for detection of HCV CA have recently been developed and recently commercialized (Seme, et al, 2005). However, the sensitivity, specificity, positive and negative predictor values of this assay have not been addequatly evaluated in pretherapeutic and therapeutic follow-up of Egyptian HCV-infected patients infected with HCV genotype 4.

AIM OF THE WORK

The aim of this study is to evaluate the diagnostic performance of the HCV core antigen assay in comparison to quantitative and qualitative HCV-RNA PCR for follow up of chronic hepatitis C Egyptian patients treated with pegylated interferon alpha 2 and ribavirin.