THE AVO APPLICATION IN HYDROCARBON EXPLORATION, NILE DELTA, EGYPT.

(A REAL CASE STUDY)

M.Sc. Thesis

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN GEOPHYSICS

Department of Geophysics

Faculty of Sciences

Ain Shams University

Submitted by:

Moataz Nady Sayed

Exploration Geophysicist

leoc Egypt Branch, ENI Group

Supervised by:

Prof. Dr. Ahmed Abu El-Ata

Prof. of Geophysics Ain Shams University

Dr. Abdel Khalek Mahmoud El-Werr

Assist. Prof. of Geophysics Ain Shams University

Dr. Brian H. Russell

Vice President Hampson-Russell

A CGG Veritas Company

March 2010

Approval Sheet

Name: Moataz Nady Sayed Mohamed Moawed

Title: "THE AVO APPLICATION IN HYDROCARBON

EXPLORATION, NILE DELTA, EGYPT.

(A REAL CASE STUDY)"

SUBMITTED TO AWARD THE DEGREE OF MASTER OF SCIENCE IN GEOPHYSICS

Supervised by:

Prof. Dr. Ahmed Abu El-Ata

Prof. of Geophysics Ain Shams University

Dr. Abdel Khalek Mahmoud El-Werr

Assist. Prof. of Geophysics Ain Shams University

Br. Rung

Dr. Brian H. Russell

Vice President Hampson-Russell

A CGG Veritas Company

Abstract

Seismic data are used in petroleum exploration to define geologic features in the subsurface. The effects of rock and fluid properties on seismic attributes have been examined recently in seismic exploration to analyze the prospectivity of the study area.

This thesis studied the fluid properties and their effect on seismic response and attempted to relate the seismic attributes computed from 3D seismic data covering the SUN field Pliocene discoveries and some other nearby Pliocene DHI prospects located in the offshore Nile Delta, Egypt. Amplitude versus offset (AVO) attributes are studied for lithology differentiation and hydrocarbon indication.

A number of published predictors are used to model reservoir data and to study the fluid properties and their seismic significance. The models include the Batzle and Wang model to predict fluid properties, the Gassmann-Biot model to predict rock velocities as a function of saturating fluids, and the amplitude variation with offset model (AVO) using Zoeppritz equations to predict seismic response from the layered rock properties.

The modeling of SUN field illustrates the benefits of using AVO analysis methods, as the SUN field is covered by two different seismic surveys; and each survey covers one Pliocene direct hydrocarbon indicator (DHI) discovery and some nearby Pliocene DHI prospects. In this study, each seismic survey was studied

separately, because different kinds of data are available for the two surveys.

First case study: (SUN-1 discovery, STAR and JUPITER prospects), where the common depth point (CDP) data (pre-stack domain) of the older seismic survey are not amplitude-preserved. So, the AVO analysis will be based only on the partial stack data and the enhanced pseudo-gradient analysis.

The second case study: (SUN-2 discovery and MOON prospect) lies in a more recent seismic survey. So, it will be supported by CDP gather, angle gather analysis, attribute analysis and intercept versus gradient cross plotting.

The sand reservoirs of the discoveries and the prospects either within the faulted anticline closures (like the SUN field discoveries and the JUPITER prospect), or the sand channel features (like the STAR and the MOON prospects) are surrounded by the water bearing Pliocene shale. So, the seismic data show significant reservoirs thickness due to the change of the density and the velocity between the gas bearing sand layers and the water bearing layers.

The flat spot due to the gas water contact (GWC) can be detected in the seismic data which can be proved later by the well logs. The positive AVO analysis results of the SUN field which are similar to the results of the nearby prospects by using different AVO analysis techniques give good indications of the presence of dry gas in the sand reservoirs of these prospects.

ACKNOWLEDGMENTS

First foremost, I would like to thank Allah for all that I have been given.

I thank my advisors: Prof. Dr. Ahmed Abu El-Ata, Dr. Brian Russell and Dr. Abdel Khalek El-Werr for all the guidance and opportunities they have provided me. I thank also Prof. Dr. Adel Othman and Prof. Dr. Salah Shibl for reviewing this thesis.

I thank leoc Egypt (Eni Group) management for their support of this project through funding and for the use of SUN field wells and seismic data. I would like also to thank Hampson-Russell (A CGG Veritas Company) for providing me the software that I have used.

Thanks to Mr. Kamal Barssoum Nile Delta exploration project manager and my project leader Mr. Gianfranco Francescato, and special thanks for Mrs. Giulia Capponi for their great support, ideas and input for this work.

Finally I thank my family for their support and for being there for me.

TABLE OF CONTENTS

SECTION P	PAGE
Abstract	iii
Table of contents	vii
List of figures	V111
CHAPTER 1: INTRODUCTION	1
1.1 Methods and techniques	2
1.2 P-wave and S-wave AVO analysis	3
1.3 Thesis objectives	
1.4 Thesis organization	5
1.5 Hardware and software used	5
CHAPTER 2: AVO THEORY	7
2.1 Rock properties	
2.2 Theoretical basis of AVO analysis	
2.3 The physical phenomenon of AVO	
2.4 Compressional wave propagation	
2.5 Snell's law	
2.6 The effect of Poisson's ratio on reflection coefficient	22
2.7 Zoeppritz's equations of P-P and P-S reflection coefficie	ent23
2.8 Linear approximation of Zoeppritz's equations	24
2.9 Bortfeld's approximation: the fluid and rigidity terms	25
2.10 Aki and Richard's approximations: velocities and dens	ity
terms	26
2.11 Shuey's approximation: normal incidence & Poisson	20
reflectivity	30
CHAPTER 3: AVO FLUIDS MODELS	32
3.1 AVO modeling	
3.2 Gassman-Biot rock and fluid model	
3.3 Batzle & Wang fluid property model	
3.4 Gas model	
3.5 Oil model.	
3.6 Brine model	59

3.7 Mixture model
CHAPTER 4: AVO CLASSES AND ATTRIBUTES CROSS
PLOTTING65
4.1 AVO classes
4.2 Rutherford and Williams classification and recognition of
hydrocarbons68
· Class 170
· Class 272
· Class 376
· Class 477
4.3 AVO attributes79
4.3.1 AVO attribute cross-plotting87
-
CHAPTER 5: NILE DELTA REAL CASE STUDY 193
5.1 Generalities
5.1.1 Objectives94
5.2 Geologic background95
5.2.1 Nile Delta basin95
5.2.2 Structural setting of the Nile Delta97
5.2.3 Pliocene formation
First case: The SUN-1 discovery, STAR and JUPITER
prospects102
5.3 SUN-1 well objectives102
5.4 STAR and JUPITER prospects history104
5.5 Geological considerations
5.6 Geophysical considerations
5.6.1 Seismic database
5.6.2 Seismic interpretation and mapping109
5.7 AVO analysis
5.7.1 Dataset processing flow111
5.8 AVO reference model
5.9 Angle stack data analysis117
CHAPTER 6: NILE DELTA REAL CASE STUDY 2128
Second case: The SUN-2 discovery and MOON prospect128
6.1 SUN-2 well objectives

6.2 MOON prospect history	129
6.3 Geological considerations	131
6.4 Geophysical considerations	131
6.4.1 Seismic database	131
6.4.2 Seismic interpretation and mapping	131
6.5 AVO analysis	132
6.5.1 Dataset processing flow	
6.6 AVO reference model	134
6.7 CDP data analysis	139
6.8 Angle stack data analysis	145
6.9 AVO attribute analysis	151
SUMMARY AND CONCLUSIONS	161
REFERENCES	163

LIST OF TABLES

Table 2.1 Weighted terms a,b,c and d,e,f	29
Table 3.1 Coefficient for velocity of fresh water calculation	
(Vw)	61
Table 4.1 different AVO attributes	80

LIST OF FIGURES

Figure (2.1): the rock content9
Figure (2.2): rock deformation with P and S waves
Figure (2.3): the behavior of P and S wave particle propagation11
Figure (2.4): P wave, horizontal and vertical shear wave11
Figure (2.5): relationship between Poisson's ration and Vp/Vs13
Figure (2.6): linear relationship between Vp and Vs14
Figure (2.7): wave behavior in the subsurface
Figure (2.8): waves generated by an incident P-wave at an interface
between two infinite elastic half spaces21
Figure (3.1): example of AVO modeling using well logs to identify
the Hydrocarbon bearing zones33
Figure (3.2): example of AVO analysis on the synthetic CDP34
Figure (3.3): different pre-stack models for different fluid
simulations35
Figure (3.4): rock content showing dry and saturated rock40
Figure (3.5): example of fluid substitution knowing the Vp, Vs and
$\rho \ logs43$
Figure (3.6): example of Vs curve calculating knowing the Vp, ρ
logs and Sw44
Figure (3.7): example of using Castanga equations to calculate the
Vs log curve which is not reliable in the reservoir zone44
Figure (3.8): example of using Biot-Gassmann equations to
calculate the Vs log curve which is reliable in the reservoir zone45
Figure (3.9): velocity versus water saturation relationship (gas
case)51
Figure (3.10): Poisson's ratio versus water saturation relationship
(gas case)52
Figure (3.11): velocity versus water saturation relationship (oil
case)57
Figure (3.12): Poisson's ratio versus water saturation relationship
(oil case)58
Figure (4.1): the behavior of different AVO classes (Rutherford and
Williams, Castanga)65

Figure (4.2): Rutherford and Williams classification with respect to
Acoustic Impedance68
Figure (4.3): different classes behavior, there are the generic AVO
curves at the top of the gas sand69
Figure (4.4): example of Class 1 anomaly (Rutherford and Williams
1989)71
Figure (4.5): example of model of class 1 anomaly(Rutherford and
Williams 1989)71
Figure (4.6): example of Class 2 anomaly (Rutherford and Williams
1989)73
Figure (4.7): Ross and Kinman Near trace and Far trace range74
Figure (4.8): example of Class 2 sands74
Figure (4.9): example of Class 2P sands75
Figure (4.10): example of Class 3 anomaly76
Figure (4.11): example of Class 4 anomaly concept (Castagna et al
1998)78
Figure (4.12): example of the picked amplitude81
Figure (4.13): example of Intercept and Gradient calculated
volumes82
Figure (4.14): example of AVO anomalies form82
Figure (4.15): example of AVO product shows a positive response
at the top and base of the reservoir83
Figure (4.16): example of AVO sum (A+B) shows a negative
response at the top of the reservoir (decrease in σ) and a positive
response at the base (increase in σ)84
Figure (4.17): Examples of different AVO attributes85 & 86
Figure (4.18): Intercept versus Gradient cross-plot showing
different AVO Classes
Figure (4.19): example of drilled bright spot, the Intercept and
Gradient cross-plot showing class 3 anomaly90
Figure (4.20): example of AVO Hodograms Intercept versus
Gradient cross-plot showing different AVO classes91
Figure (5.1): SUN field discoveries in Kafr el Sheikh Formation93
Figure (5.2): Satellite image for the Nile Delt95
Figure (5.3) Nile Delta structural features (Kamel et al. 1998)98

Figure (5.4): Pliocene Formation undisturbed zone and active
growth faults101
Figure (5.5): SUN-1 discovery DHI anomaly within Kafr el Sheikh
Formation
Figure (5.6): SUN-1 discovery DHI anomaly within Kafr el Sheikh
Formation
Figure (5.7): STAR prospect DHI anomaly within Kafr el Sheikh
Formation
Figure (5.8): JUPITER prospect DHI anomaly within Kafr el
Sheikh Frm. 105
Figure (5.9): Pliocene sealing faults
Figure (5.10): Pliocene growth faults and the associated
rollovers
Figure (5.11): Pliocene buried and active growth faults108
Figure (5.12): SUN-1 well logs used in AVO modeling114
Figure (5.13): P-impedance versus Resistivity relationship in SUN-
1 well
Figure (5.14): P-impedance versus Gamma ray relationship in SUN-
1 well116
Figure (5.15): SUN-1 discovery amplitude anomaly on Near stack
section117
Figure (5.16): SUN-1 discovery amplitude anomaly on Far stack
section117
Figure (5.17): SUN-1 discovery amplitude anomaly on enhanced
stack section (Far-Near)*Far118
Figure (5.18): RMS amplitude extraction of SUN-1 anomaly on
Full, Near and Far stacks118
Figure (5.19): Maximum amplitude extraction of SUN-1 anomaly
on Full, Near and Far stacks119
Figure (5.20): SUN-1 discovery anomaly enhanced pseudo-gradient
RMS and Maximum amplitude extraction120
Figure (5.21): STAR prospect amplitude anomaly on Near stack
section121
Figure (5.22): The STAR prospect amplitude anomaly on the Far
stack section121

Figure (5.23): The STAR prospect anomaly on an enhanced stack
section(Far Near)*Far121
Figure (5.24): The JUPITER prospect amplitude anomaly on the
Near stack Section
Figure (5.25): The JUPITER prospect amp. anomaly on the Far
stack section122
Figure (5.26): The JUPITER prospect anomaly on the enhanced
stack section (Far-Near)*Far123
Figure (5.27): The RMS amplitude extraction of the STAR prospect
anomaly on Full, Near and Far stacks123
Figure (5.28): The RMS amplitude extraction of the JUPITER
prospect anomaly on Full, Near and Far stacks124
Figure (5.29): Maximum amplitude extraction of the STAR
prospect anomaly on Full, Near and Far stacks124
Figure (5.30): Maximum amplitude extraction of the JUPITER
prospect anomaly on Full, Near and Far stacks125
Figure (5.31): STAR prospect anomaly enhanced pseudo-gradient
RMS and Maximum amplitude extraction125
Figure (5.32): JUPITER prospect anomaly enhanced pseudo-
gradient RMS and Maximum amplitude extraction126
Figure (6.1): SUN-2 discovery DHI anomaly within Kafr el Sheikh
Formation
Figure (6.2): SUN-2 discovery DHI anomaly within Kafr el Sheikh
Formation
Figure (6.3): The MOON prospect DHI anomaly within the Kafr el
Sheikh Fm
Figure (6.4): The MOON prospect DHI anomaly within the Kafr el
Sheikh Fm
Figure (6.5): The SUN-2 well logs used in AVO modeling136
Figure (6.6): The P-impedance versus Res. relationship in the SUN-
2 well
Figure (6.7): The P-impedance versus Gamma ray relationship in
SUN-2 well
Figure (6.8): CDP gather across the SUN-2 discovery amplitude
anomaly (on the right amplitude envelope colored)139
Figure (6.9): CDP gather across MOON prospect amplitude
anomaly (on the right amplitude envelope colored)140

Figure (6.10): CDP stack section across the SUN-2 discovery amp.
Anomaly140
Figure (6.11): CDP stack section across the SUN-2 discovery
amplitude anomaly (amplitude envelope colored)141
Figure (6.12): CDP stack section across the MOON prospect amp.
Anomaly141
Figure (6.13): CDP stack section across the MOON prospect
amplitude anomaly (amplitude envelope colored)142
Figure (6.14): Angle gather across the SUN-2 discovery amplitude
anomaly (on the right amplitude envelope colored)142
Figure (6.15): Angle gather across the MOON prospect amplitude
anomaly (on the right amplitude envelope colored)143
Figure (6.16): Angle stack section across the SUN-2 discovery
amplitude Anomaly143
Figure (6.17): Angle stack section across the SUN-2 discovery
amplitude anomaly (amplitude envelope colored)144
Figure (6.18): Angle stack section across the MOON prospect
amplitude anomaly (amplitude envelope colored)144
Figure (6.19): Angle stack section across the MOON prospect
amplitude anomaly (amplitude envelope colored)145
Figure (6.20): The SUN-2 discovery amplitude anomaly on a near
angle stack Section145
Figure (6.21): The SUN-2 discovery amplitude anomaly on a far
angle stack Section146
Figure (6.22): The SUN-2 discovery amplitude anomaly on an
enhanced stack section (Far-Near)*Far146
Figure (6.23): RMS amplitude extraction of the SUN-2 anomaly on
Full, Near and Far stacks
Figure (6.24): Maximum amplitude extraction of the SUN-2
anomaly on Full, Near and Far stacks147
Figure (6.25): The SUN-2 discovery anomaly enhanced pseudo-
gradient RMS and Maximum amplitude extraction slices148
Figure (6.26): The MOON prospect amplitude anomaly on a Near
angle stack Section
Figure (6.27): The MOON prospect amplitude anomaly on a Far
angle stack Section

Figure (6.28): The MOON prospect amplitude anomaly on an
enhanced stack section (Far-Near)*Far149
Figure (6.29): RMS amplitude extraction of the MOON anomaly on
Full, Near and Far angle stacks150
Figure (6.30): Maximum amplitude extraction of the MOON
anomaly on Full, Near and Far angle stacks150
Figure (6.31): The MOON prospect anomaly enhanced pseudo-
gradient RMS and Maximum amplitude extraction151
Figure (6.32): The SUN-2 discovery amplitude anomaly on
Intercept section
Figure (6.33): The SUN-2 discovery amplitude anomaly on
Gradient section
Figure (6.34): The SUN-2 discovery amplitude anomaly on
Intercept*Gradient (P*G) section
Figure (6.35): The SUN-2 discovery amplitude anomaly on a
Restricted Gradient (G*sign(P)) section153
Figure (6.36): The MOON prospect amplitude anomaly on Intercept
section
Figure (6.37): The MOON prospect amplitude anomaly on Gradient
section
Figure (6.38): The MOON prospect amplitude anomaly on an
Intercept*Gradient (P*G) section
Figure (6.39): The MOON prospect amplitude anomaly on a
Restricted Gradient (G*sign(P)) section155
Figure (6.40): The SUN-2 discovery Intercept versus Gradient
cross-plotting
Figure (6.41): The SUN-2 discovery AVO attribute stack (in red:
samples of class 3 gas sand distribution)
Figure (6.42): The MOON prospect Intercept versus Gradient cross-
plotting
Figure (6.43): The MOON prospect AVO attribute stack (in red:
samples of class 3 gas sand distribution)