ASSESSMENT OF RIGHT VENTRICULAR FUNCTION BY MYOCARDIAL PERFORMANCE INDEX IN DIABETIC PATIENTS

Thesis

Submitted for Partial Fulfillment of the Master degree in **Cardiology**

By

Shaimaa Abd El Maaboud Mohamed M.B.B.Ch. 2007

Resident of cardiology&CCU NATIONAL HEART INSTITUTE

Supervised by

Dr/Sherif Samir Elzahwy

Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr/Viola William Qdees

Fellow of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University **2013**

_____ 1 _____

Acknowledgment

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Sherif Samir Elzahwy, Professor of Cardiology for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Dr. Viola William Qdees, Fellow of Cardiology for her sincere efforts and fruitful encouragement.

Shaimaa Abd El Maaboud

List of Contents

Title		Page	e No.
Introduction	 	 	1
Aim of the study	 	 	12
Review of Literature			
• Diabetes Mellitus	 	 •••••	13
 Echocardiographic Ventricle 		_	36
Patients and Methods	 	 	71
Statistical Analysis	 	 •••••	84
Results	 	 	85
Discussion	 	 	100
Study Limitations	 	 	108
Conclusion	 	 	109
Recommendations	 	 	110
Summary			111

List of Tables

Table No.	Title Page No.	
Table (1):	Comparison of type 1 and 2 diabetes	18
Table (2):	Diabetes diagnostic criteria	26
Table (3):	RV Chamber dimensions	47
Table (4):	Systolic function.	67
Table (5):	RV diastolic function.	69
Table (6):	Comparison between patients and controls	85
Table (7):	Sex distribution in both groups.	86
Table (8):	Prevalence of smoking in the two groups	87
Table (9):	Comparison between patients and controls regarding BMI.	88
Table (10):	LV systolic function	89
Table (11):	LV diastolic function	90
Table (12):	E'	91
Table (13):	Comparison between patient and control groups regarding E/e'	92
Table (14):	Comparison between patients and controls	93
Table (15):	Comparison between patients and controls	94
Table (16):	Right ventricular E/A ratio	95
Table (17):	RV TDI comparison between both groups	96
Table (18):	MPI comparison between both groups	97
Table (19):	Duration among diabetic patients	98
Table (20):	Correlation between duration of DM and MPI	98

List of Figures

Fig. N	lo.	Title	Page No.
Fig. (1):	Universal blue circle symbol for diabet	es13
Fig. (2):	Overview of the most significant syr of diabetes	•
Fig. (3):	Paraternal long-axis of RV anterior paraternal long-axis view of RV in flor Parasternal short axis of basal RV	ow and
Fig. (4):	RV Apical 4-chamber, RV apical 5-chamber and RV subcostal 4-chamber	
Fig. (5):	Diagram (left) and correspechocardiographic apical 4-chamber (right) showing the right ventricula basal (RVD1) and mid cavity (RVI minor dimensions and the RV longitudimension (RVD3)	image r (RV) 02) RV tudinal
Fig. (6):	Normal subject, FAC 60%	48
Fig. (7):	Calculation of right ventricular myo performance index (MPI) by pulsed I (A) and pulsed tissue Doppler (B)	Ooppler
Fig. (8):	Time intervals of the myo performance index by TDI	
Fig. (9):	Measurement of tricuspid annular systolic excursion (TAPSE)	
Fig. (10):	Tissue Doppler of the tricuspid annul patient with normal right vent systolic function: (left) pulsed and color-coded offline analysis	cricular (right)
Fig. (11):	Doppler tissue velocities and time in obtained at lateral tricuspid valve ann	

._____ 5 ____

List of Figures (Cont...)

Fig.	No.	Title Page No.	
Fig.	(12):	Schematic representation of diastolic transmitral flow assessment	'3
Fig.	(13):	Schematic diagram of IVRT7	5
Fig.	(14):	RV free wall thickness 0.5 cm7	6
Fig.	(15):	RV diameters (basal, mid and longitudinal)7	7
Fig.	(16):	A) End systolic area, B) End diastolic area, to calculate fractional area change7	'8
Fig.	(17):	Measurement of tricuspid annular plane systolic excursion (TAPSE)	'9
Fig.	(18):	Tricuspid valve inflow E/A ratio	0
Fig.	(19):	MPI = IVRT + IVCT / ET8	2
Fig.	(20):	MPI and tissue Doppler8	3
Fig.	(21):	Sex distribution in both groups8	6
Fig.	(22):	LV diastolic function9	0
Fig.	(23):	Comparison between patient and control groups regarding E/e'9	2
Fig.	(24):	Comparison between patients and controls9	14
Fig.	(25):	MPI comparison between both groups9	7
Fig.	(26):	Correlation between duration of DM and MPI9	8
Fig.	(27):	Receiver operating characteristic curve to	ıa

•________6 _____

List of Abbreviations

2D 3D ANOVA one way Ao ASD	Two dimensional Three dimensional analysis of variance Aorta
ANOVA one way Ao	analysis of variance
Ao	-
	Aorta
ASD	110114
	Atrial septal defect
AT	Acceleration time
BMI	Body mass index
CAD Core	onary artery disease
CI	Confidence interval
CS	Coronary sinus
DAN Diabetic au	itonomic neuropathy
DM	Diabetes mellitus
DMD Diabetic	c myocardial disease
DT	Deceleration time
ECG	Electrocardiography
$oldsymbol{EF}$	Ejection fraction
ESRD End	d-stage renal disease
ET	Ejection time
FAC Fra	actional area change
GDM Gestation	nal diabetes mellitus
HDL High	density lipoprotein
IDDM Insulin-depende	ent diabetes mellitus
IGT Impaire	ed glucose tolerance

<i>IVA</i>	Isovolumic acceleration time				
IVC				Inferio	or vena cava
<i>IVCT</i>		Isovolumetric contraction time			
<i>IVRT</i>			Isovolun	netric rela	exation time
IVV	Peak	myocardial	velocity	during	isovolumic contraction
LA					Left atrium
<i>LADA</i>		Latent	t autoimm	une diabe	etes of adults
LDL		Low density lipoprotein			
LRV		Lower reference value			
LSD		Least significance difference			
LV				L	eft ventricle
LVEDD		Left ventricle end diastolic diameter			
LVESD		Left ventricle end systolic diameter			
Mi		Myocardial infarction			
MPI		Myocardial performance index			
MRI		Magnetic resonance imaging			
MV		Mitral valve			
NIDDM		Non-insu	lin-depend	dent diab	etes mellitus
NO					Nitric oxide
PA		Pulmonary artery			
PFO		Patent foramen ovale			
PH		Pulmonary hypertension			
PM				Papi	llary muscle
PVD			Periph	eral vasc	ular disease
PWD				Pulsed v	vave Doppler
PW-TDI		Puls	sed wave ti	ssue Dop	pler imaging
RA				Ĵ	Right atrium

Introduction

RIMP	Right ventricular index of myocardial performance
ROC	Receiver operating characteristic curve
RV	Right ventricle
RVH	Right ventricular hypertrophy
RVOT	Right ventricular outflow tract
RVSP	Right ventricular systolic pressure
SD	Standard deviation
SPSS	Statistical package for social science
TAM	Tricuspid Annular Motion
TAPSE	Tricuspid annular plane systolic excursion
TCO	Tricuspid (valve) closure opening time
TDI	Tissue Doppler Imaging
TR	Tricuspid regurge
U/S	Ultrasound
URV	Upper reference value
US	United States

9 _____

INTRODUCTION

The right ventricle is neglected in clinical practice, because there is lack of awareness of its pivotal role in cardiac and pulmonary vascular disease (*Coghlan and Davar*, 2007).

Right ventricular function is the primary determinant of prognosis and effort tolerance in many groups of patients. Clinicians require measures that are widely available, easily obtained, highly reproducible, and provide clear information on prognosis, likely response to therapy or provide feedback on the success of therapeutic interventions. However RV function is notoriously difficult to evaluate, given its geometry, interrelationship with the left ventricle and sensitivity to alteration in pulmonary pressure (*Coghlan and Davar*, 2007).

In patients with left ventricular failure, myocardial infarction and pulmonary hypertension, RV function is an important predictor of mortality and quality of life (*Marcu et al.*, 2006).

The majority of proposed methods of echocardiographic assessment of RV function are based on volumetric approximations of the R V. Such approaches have inherent limitations, first as volume related measures such as ejection fraction (EF) are load dependent, second because of the complex geometry of RV (*Lang et al.*, 2005).

The issue of RV geometry is usually overcome using geometry independent parameters such as tricuspid annular velocity and Tei index. Tei index is calculated using Doppler as the ratio of the isovolumic contraction and relaxation times to the ejection time (*Coghlan and Davar*, 2007).

The volume calculation and estimation of EF are not ideal for the clinical assessment of RV function; however regional myocardial wall motion detection by M-Mode and tissue Doppler velocities is probably the most useful method in clinical practice (*Triantafyllou et al.*, 2010).

Diabetes mellitus is a powerful risk factor for cardiovascular disease associated with high morbidity and mortality rates. Diabetic patients also have an increased incidence of heart failure which has been traditionally attributed to concurrent presence of ischemic or hypertensive heart disease. Yet, nowadays according to recent scientific evidence, diabetic myocardial disease (DMD) is more and more being considered as a distinct entity, independent of the coexistence of CAD, arterial hypertension or other risk factors, with the potential to lead to a self-existent progressive development of heart failure (*Mytas et al.*, 2009).

The vast majority of previous reports regarding myocardial dysfunction in patients with diabetes mellitus were dedicated to the left ventricle, ignoring the role of the RV. However, it is unlikely that the pathological sequel of metabolic disarrangements in diabetes spares the right sided myocardium (*Kosmala et al.*, 2007).

AIM OF THE STUDY

To assess the feasibility of pulsed wave tissue Doppler imaging and myocardial performance index (MPI) of the right ventricle in the assessment of right ventricular function in diabetic patients without coronary artery disease.

Chapter (1)

DIABETES MELLITUS

Definition:

The term diabetes mellitus describes a metabolic disorder of multiple aetiology characterized by chronic hypergly-caemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. The effects of diabetes mellitus include long—term damage, dysfunction and failure of various organs.

Diabetes mellitus, or simply **diabetes**, is a group of metabolic diseases in which a person has high blood sugar, either because the body does not produce enough insulin, or because cells do not respond to the insulin that is produced (*Shoback et al.*, *2011*). This high blood sugar produces the classical symptoms of polyuria (frequent urination), polydipsia (increased thirst) and polyphagia (increased hunger).

Fig. (1): Universal blue circle symbol for diabetes (International Diabetes Federation, 2006).

There are three main types of diabetes mellitus (DM). Type 1 DM results from the body's failure to produce insulin, and presently requires the person to inject insulin or wear an insulin pump. This form was previously referred to as "insulindependent diabetes mellitus" (IDDM) or "juvenile diabetes". Type 2 DM results from insulin resistance, a condition in which cells fail to use insulin properly, sometimes combined with an absolute insulin deficiency. This form was previously referred to as non insulin-dependent diabetes mellitus (NIDDM) or "adult-onset diabetes". The third main form, gestational diabetes occurs when pregnant women without a previous diagnosis of diabetes develop a high blood glucose level. It may precede development of type 2 DM.

Other forms of diabetes mellitus include congenital diabetes, which is due to genetic defects of insulin secretion, cystic fibrosis-related diabetes, steroid diabetes induced by high doses of glucocorticoids, and several forms of monogenic diabetes.

All forms of diabetes have been treatable since insulin became available in 1921, and type 2 diabetes may be controlled with medications. Both types 1 and 2 are chronic conditions that cannot be cured. Pancreas transplants have been tried with limited success in type 1 DM; gastric bypass surgery has been successful in many with morbid obesity and type 2 DM. Gestational diabetes usually resolves after delivery. Diabetes without proper treatments can cause many

complications. Acute complications include hypoglycemia, diabetic ketoacidosis, or nonketotic hyperosmolar coma. Serious long-term complications include cardiovascular disease, chronic renal failure, and diabetic retinopathy (retinal damage). Adequate treatment of diabetes is thus important, as well as blood pressure control and lifestyle factors such as smoking cessation and maintaining a healthy body weight

Epidemiology:

Prevalence of diabetes worldwide in 2000 (per 1,000 inhabitants) - world average was 2.8%.

Globally, as of 2010, an estimated 285 million people had diabetes, with type 2 making up about 90% of the cases. Its incidence is increasing rapidly, and by 2030, this number is estimated to almost double (*Wild et al.*, 2004).

Diabetes mellitus occurs throughout the world, but is more common (especially type 2) in the more developed countries. The greatest increase in prevalence is, however, expected to occur in Asia and Africa, where most patients will probably be found by 2030 (*Wild et al., 2004*).

The increase in incidence in developing countries follows the trend of urbanization and lifestyle changes, perhaps most importantly a "Western-style" diet. This has suggested an