

Behavior of Hollow Flange C-Section Beams

By **Ahmed Mostafa Mohamed Ibrahim**

B.Sc. Civil Engineering Ain Shams University

A Thesis

Submitted in Partial Fulfillment for the Requirements
of the Degree of Master of Science
in Civil Engineering (Structural)

Supervised by

Prof. Dr. **Abdelrahim Khalil Dessouki**

Professor of Steel Structures
Structural Engineering department
AinShams University

Dr.

AmrAbdelSalamShaat

Assistant Professor Structural Engineering Department AinShams University Dr.

Ahmed AbdelmageedMatloub

Assistant Professor Structural Engineering Department AinShams University

©Cairo - 2013

EXAMINERS COMMITTEE

1- Prof. Dr. Nabil Sayed Mahmoud	()
Professor of Steel Structures Faculty of Engineering Mansoura University		
2- Prof. Dr. Mohamed Nabil Al-Atrouzy Professor of Steel Structures Faculty of Engineering AinShams University	()
3- Prof. Dr. Abdelrahim Khalil Dessouki Professor of Steel Structures Faculty of Engineering AinShams University	()

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of

Master of Science in Structural Engineering.

The work included in this thesis has been carried out by the author in the

Department of Structural Engineering, Ain Shams University, from Jan. 2010 to

June 2013.

No part of this thesis has been submitted for a degree or a qualification at

any other university or institution.

Name

: Ahmed Mostafa Mohamed Ibrahim

Signature:

Date :

/ /

ii

ACKNOWLEDGEMENTS

First and foremost, praise and thanks to Almighty Allah, the Most Gracious, the Most Merciful, and peace be upon His Prophet.

I would like to express my deepest gratitude and appreciation to my supervisor, Prof. Dr. Abdelrahim Khalil, for his invaluable guidance, support and encouragement.

I also greatly appreciate the help, guidance and support provided by both Dr. AmrShaat and Dr. Ahmed Matloub throughout all stages of research.

I would also like to express my deepest gratitude to all the staff of steel structures in my faculty for their great feelings.

Finally, I would like to express my appreciation to my father, my beloved mother and the whole family for lots of support.

ABSTRACT

In the past decade, the use of hollow flange beams (HFB) has found many applications in the building industry and it has been used in many projects instead of the common C and Z cold-formed sections. The unique shape of HFB, comprising two torsionally stiff hollow flanges and a slender web, is a double-edged weapon. As it overcomes most of the disadvantages of open cold-formed sections, it is the main reason for limiting the bending capacity of HFB to its lateral distortional buckling (LDB) capacity. The current study aims at optimizing the cross sectional configurations of HFBs for performance improvement. Also, an investigation to alleviate LDB using web stiffeners with different configurations is performed.

A brief introduction and literature review of previous works in the field of hollow flange beams is presented. Also, a summary on the cold-formed works and different welding processes introduced. The finite element model used to solve the current problem is presented and validated by comparing its results with experimental results found in the literature. The model takes into account material and geometric non-linearities as well as the initial geometric imperfections and the residual stresses.

84 models are performed to study the configuration of the HFB taking variable parameters as; flange depth-to-flange width ratio, width of plate performing the HFB section and beam span. A comprehensive parametric study is conducted to study the best geometric configuration of hollow flange beams against LDB. Values for the hollow flanges aspect ratios ranging from 0.67 to 0.80 are recommended for better cross sectional utilization.

A comparison between finite element results and the current design rules is conducted and found that the current rules are conservative when dealing with HFB.A modification to the HFB slenderness equation, presented in the AS/NZS-4600 (2005) standards, is proposed to accurately predict the bending strength of the HFBs.

The finite element study is extended to study the effect of adding web stiffeners to the HFBs. 59 models are performed in this study using the proposed best section configuration. The spacing between stiffeners as well as stiffener depth and thickness are taken as the variable parameters. The obtained results revealed that the gain in bending strength of the HFB is directly proportional to both the web ratio and the unsupported length of HFBs. New equations that accurately predict the bending capacity of strengthened HFBs are also proposed.

Finally, a summary of the work carried out in this thesis along with general conclusions obtained from the study and recommendations for future studies in same field are presented.

TABLE OF CONTENTS

EXAMINERS COMMITTEE	i
STATEMENT	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xii
NOTATIONS	xvii
ABBREVIATIONS	xix
CHAPTER 1	1
INTRODUCTION	1
1.1 Background	1
1.1.1 Advantages of HFB Sections	
1.1.2 HFB Modes of Failure	2
1.2 Research Problem	3
1.2.1 The Effect of the Cross Section Geometry on the Bell HFBs 3	havior of
1.2.2 The Weak Web Stiffness in Resisting LDB	4
1.3 Research Objectives	5
1.4 Contents of the Thesis	6

CHAPTER 2	8
LITERATURE REVIEW	8
2.1 Cold-formed Steel Sections	8
2.1.1 General	8
2.1.2 Material Properties of Cold-formed Steel Sections	9
2.1.3 Effect of Cold-forming on the Mechanical Properties of Steel	10
2.1.4 Geometric Imperfections and Residual Stresses	12
2.1.4.1Geometric Imperfections	12
2.1.4.2Residual Stresses	13
2.1.5 Flexural Behavior of Cold-formed Sections	13
2.1.5.1Local Buckling	
2.1.5.2Distortional Buckling	15
2.1.5.3Lateral Torsional Buckling	16
2.2 Welding of Cold-Formed Sections	16
2.2.1 Electric Resistance Welding	17
2.2.1.1Spot Welding	17
2.2.1.2Seam Welding	18
2.2.2 Arc Welding	18
2.2.2.1Shielded Metal Arc Welding	19
2.2.2.2Flux Cored Arc Welding	19
2.2.2.3Gas Metal Arc Welding	19
2.2.2.4Submerged Arc Welding	20
2.3 Hollow Flange Beams	20
2.3.1 General	20
2.3.2 Buckling Behavior of HFB Subjected to Bending	23
2.3.3 Improving the performance of triangular HFB against LDB	27
2.3.4 Rectangular Hollow Flange Beams	29
2.3.4.1Shear Behavior of RHFB	32
2.3.4.2Effect of Moment Gradient on the Capacity of RHFB	32
2.3.4.3Effect of Load Location on the Capacity of RHFR	35

2.3.5 Australian/New Zealand Standard for HF	<i>B</i> 38
2.4 Finite Element Analysis	39
2.4.1 Analyses Types	
2.4.1.1Non-linear analysis	41
2.4.1.2Buckling analysis	43
2.4.2 Geometric Imperfections and Residual str	
2.4.2.1Geometric Imperfections	43
2.4.2.2Residual Stresses	45
CHAPTER 3	48
FINITE ELEMENT MODELING AND VERII	FICATION48
3.1 General	48
3.2 Schemes of Models	49
3.3 Finite Element Modeling	54
3.3.1 Element Type	54
3.3.2 Discretization of the Mesh	56
3.3.3 Material Properties	57
3.3.4 Loading and Boundary Conditions	60
3.3.5 Geometric Imperfections	61
3.3.6 Residual Stresses	63
3.3.7 Analysis Methods	65
3.4 Verification of FEM using Published Exp	erimental Tests66
3.4.1 Finite element model	66
3.4.2 Results of the verification	68
2.5 Summery	72

NFIGU	URATIONS74
4.1	General74
4.2	Cross Section Geometric Configurations75
4.3	Results81
4.	3.1 Effect of flange aspect ratio on the strength of HFB sections83
4.	3.2 Effect of depth ratio on the strength of HFB sections87
4.	3.3 Effect of plate width on the strength of HFB sections90
4.	3.4 Effect of beam span on the strength of HFB sections90
4.4	Failure modes93
4.	4.1 Effect of flange aspect ratio on the slenderness of HFB sections 94
4.	4.2 Effect of depth ratio on the slenderness of HFB sections96
4.	4.3 Effect of beam span on failure mode of HFB98
4.5	Characteristics of lateral distortional buckling100
4.6	Applying the Current Design Rules of the HFBs104
4.	6.1 New Proposed equations106
CH	APTER 5110
EFF	FECT OF TRANSVERSE WEB STIFFENERS ON THE
NDIN(G STRENGTH OF HOLLOW FLANGE BEAMS110
5.1	General110
5.2	Results112
5.	2.1 The effect of stiffener depth113
	2.2 The effect of unsupported length of HFB114

5.2.3 The Effect of web panel ratio	114
5.2.4 The effect of stiffener thickness	122
5.3 Failure modes	122
5.3.1 Un-strengthened specimens	122
5.3.2 Specimens strengthened with partial depth stiffeners	124
5.3.3 Specimens strengthened with full depth stiffeners	125
5.4 Proposed equations for the calculation of the bending ca	pacity
of HFB with web stiffeners	126
CHAPTER 6	132
SUMMARY AND CONCLUSIONS	132
6.1 Summary	132
6.2 Conclusions	134
6.2.1 Conclusions of the geometric configurations of HFB	134
6.2.2 Conclusions of adding the wed stiffeners to HFB	135
6.3 Recommendations for future work	136
REFERENCES	137
APPENDIX A	140
APPENDIX B	141

LIST OF TABLES

Table 3-1 Comparison between the results from published experimental
tests and the present FE analysis69
Table 4-1 Matrix for the FE models used in Chapter 477
Table 4-2 Geometric configurations of the models 79
Table 4-3 Results of FEM for beams with different flange aspect ratio $\dots 85$
Table 4-4 Results of FEM for models with different depth ratio89
Table 4-5 Results of FEM for models with different plate width91
Table 4-6 Results of FEM for models with different spans
Table 4-7 Slenderness of FEM with different flange aspect ratio95
Table 4-8 Slenderness of FEM with different depth ratio 97
Table 4-9 Slenderness of FEM with different spans 98
Table 5-1 Results of FEA for specimens with $t_s/t = 1.0$
Table 5-2 Results of FEA for 4000 mm long specimens with different t_s/t
values

LIST OF FIGURES

Figure 1-1 Hollow flange beam (HFB) with rectangular flanges
Figure 1-2 Failure modes of HFB sections
Figure 1-3 Different geometric configurations for same plate width (L_p) 4
Figure 1-4 Expected effect of transverse stiffeners
Figure 2-1 Various shapes of cold-formed sections $(Yu, 2010)^{31}$ 8
Figure 2-2 Stress-strain curves for cold-formed steel section $(Yu, 2010)^{31}9$
Figure 2-3 Effect of cold-forming on the mechanical properties of steel (Yu,
2010) ³¹
Figure 2-4 Effect of strain hardening and strain aging on stress-strain
characteristics (Yu, 2010) ³¹ 11
Figure 2-5 The Bauschinger and the inverse Bauschinger effect (Yu, 2010) ³¹
Figure 2-6 Geometric imperfection (B. Schafer, 1998) ²³
Figure 2-7 Flexural and membrane residual stresses (B. Schafer, 1998) $^{23}13$
Figure 2-8 Flexural behavior of cold-formed sections $(Yu, 2010)^{31}$
Figure 2-9 Local buckling of compression flange of Z-section
Figure 2-10 Distortional buckling of compression flange of Z-section $\dots 15$
Figure 2-11 Lateral torsional buckling of Z-section
Figure 2-12 Seam welding
Figure 2-13 HFB sections
Figure 2-14 Steps of forming the rectangular hollow flange section21
Figure 2-15 Dimensions and full section properties for HFB with
rectangular flanges(Design Capacity Tables For LiteSteel Beams, 2007) ¹² 23
Figure 2-16 Buckling stress versus buckle half-wavelength for HFB with
triangular flange (Hancock, 1998) ¹⁴ 24
Figure 2-17Lateral distortional buckling of HFB (PI &Trahair, 1997) ²¹ 26
Figure 2-18 Different stiffeners configurations (Avery & Mahendran, 1997) ^{7,8}
28
Figure 2-19 Comparison between FEA results and AS 4100 predictions
(Mahendran & Mahaarachchi, 2006) 20

Figure 2-20 Comparison between FEA results, AS/NZS 4600 predict	ion
and proposed design rules (Mahendran & Mahaarachchi, 2006) 20	.31
Figure 2-21 Comparison between experimental results and AS/NZS-4	600
(Poologanathan&Mahendran, 2009) ²²	33
Figure 2-22 Moment gradient of simply supported RHFBs	
Figure 2-23 Equivalent uniform moment factor (α_m) versus end mom	ent
ratio (β) for simply supported RHFBs (Winatama&Mahendran, 2008) ²⁹	.34
Figure 2-24 Different applied loads on RHFB (Winatama&Mahenda	ran,
2009) ³⁰	35
Figure 2-25 Effect of load application point for RH	
(Winatama&Mahendran, 2009) ³⁰	37
Figure 2-26 Additional torque due to different load application poi	ints
(Winatama&Mahendran, 2009) ³⁰	37
Figure 2-27Comparison between FEA, experiments resultsand design ru	ıles
of AS/NZS-4600 (Anapayan&Mahendran, 2009) ²	.39
Figure 2-28 Overview of possible errors during FEA (Bakker, 2003)	.41
Figure 2-29 Stress-strain curve for non-linear material	.42
Figure 2-30 Measured imperfections for web and flange of 200x60x	2.0
RHFB having length of 3.2 m (Seo et al, 2008) ²⁵	.44
Figure 2-31 Effect of imperfections magnitude and direction on	the
ultimate moment of RHFB (Seo et al, 2008) 25	.45
Figure 2-32 Effect of residual stresses on ultimate moment of RHFB sect	ion
(Seo et al., 2008) ²⁵	
Figure 3-1 Overall view of test rig by Mahendran&Mahaarachchi (2006)	6) ²⁰
	49
Figure 3-2 Loading and supports condition for specimens	by
Mahendran&Mahaarachchi (2006) ²⁰	.50
Figure 3-3 Scheme for specimens by Mahendran&Mahaarachchi (2006	(a) 20
Figure 3-4 Overall view of test rig by Winatama&Mahendran (2008) 29	
Figure 3-5 Loading and support conditions for specimens	by
Winatama&Mahendran (2008) ²⁹	52

Figure 3-6 Scheme for specimens by Winatama&Mahendran (2008) ²⁹	52
Figure 3-7 Model scheme for the ideal model used in the present study.	54
Figure 3-8 Element family commonly used in <i>ABAQUS</i> ¹	56
Figure 3-9 S4R5 shell element used in $ABAQUS^1$	56
Figure 3-10 Typical finite element mesh for HFB used in the present st	tudy
	57
Figure 3-11 Bi-linear stress-strain curve used in the present study	60
Figure 3-12 Loading and boundary conditions used in the present study	761
Figure 3-13 Initial imperfections used in the present study	62
Figure 3-14 Idealized residual stresses distribution for HFB sections	used
in the present study	64
Figure 3-15 Typical residual stresses contours in the FEM	65
Figure 3-16 Substituting thickening of web by elastic material in FEM $\scriptstyle .$	67
Figure 3-17 Moment gradient factor (β) for test beams	70
Figure 3-18 FEA moment versus experimental moment for verifica	
models	71
Figure 3-19 FEA and experimental moment versus vertical displacement	nt at
mid-span for specimen 200x60x2.5 with L =4000 mm	71
Figure 3-20 Comparison between FEA and experimental failure mode	e for
specimen 200x60x2.5 with <i>L</i> =4000 mm	72
Figure 4-1 HFB geometric configurations	75
Figure 4-2 Arc length versus load proportional factor	82
Figure 4-3 Normalized ultimate moment (M_u/M_y) versus flange aspect in	ratio
(d_f/b) for models with $L=4000$ mm and $L_p=360$ mm	86
Figure 4-4 Normalized ultimate moment (M_u/M_y) versus flange aspect in	ratio
(d_f/b) for models with $L=4000$ mm and $L_p=480$ mm	86
Figure 4-5 Normalized ultimate moment (M_u/M_y) versus flange aspect in	ratio
(d_f/b) for models with $L=4000$ mm and $L_p=650$ mm	87
Figure 4-6 Normalized ultimate moment (M_u/M_y) versus depth ratio (d_a)	$_{c}/L_{p})$
for models with $L = 4000$ mm and $L_p = 360$ mm	88
Figure 4-7 Normalized ultimate moment (M_u/M_y) versus flange aspect in	ratio
(d_f/b) for models with different spans	92