Detection of Methicillin Resistance Among Staphylococci Species

Thesis

Submitted for partial fulfillment of Master Degree In Clinical & Chemical Pathology

By Mai Mabrouk Salem OmarMB,B.Ch.

Supervised By

\mathcal{D} r. Samia Abdou Girgis

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine Ain Shams University

Professor/ Dr. Howida Ezz El-Deen Gomaa

Professor of Clinical and Chemical Pathology National Research center

Faculty of Medicine Ain Shams University 2012

First, and foremost, all thanks and gratitude to **ALLAH,** most gracious and most merciful, for every thing.

I would like to express my great thanks to **Dr. Samia**Abdou Girgis, Assistant Professor of Clinical and Chemical

Pathology, Ain Shams University for her tremendous effort that she
has done in the meticulous revision of this work.

I appreciate the great effort of **Prof. Dr. Howida Ezz El- Deen Gomaa**, Professor of Clinical and Chemical Pathology,
National Research Center who helped me with her precious opinions
and contributive comments that served much in the construction of this
work

At last, I would like to devote this study to my great father who taught me a lot and who I really wished to be here with me and I want to thank my family a lot for their great support, patience, and continuous encouragement.

Mai Mabrouk Salem

List of Tables

No.	Tables	page
1	Results of coagulase test of staphylococcal species	7
2	Virulence factors of <i>S. aureus</i>	7
3	Virulence factors for CoNS	9
4	Classification schemes for bacterial β-lactamases	14
5	Classification of SCCmec gene	24
6	Testing conditions for methods of testing DD and MIC	39
7	Breakpoints of different methicillin susceptibility tests for staphylococci	65
8	PCR assays FDA approved for MRSA screening or detection	66
9	Screening High Risk Patients	74
10	Experimental staphylococcal vaccines and immunotherapies in clinical trials	90
11	Formula of Mueller Hinton agar (MHA)	97
12	Materials used for 0.5 McFarland turbidity tube	107
13	Formula of Oxacillin Resistance Screening Agar Base (ORSAB)	108
14	ORSAB selective supplement	110
15	Components of reaction mixture for each 25 ul reaction	110
16	Three-step cycling protocol	113
17	Interpretive Criteria (in mm) for Cefoxitin Disk Diffusion Test	119
18	MIC Interpretive Standard in (μg/mL) for E-test	125
19	Referral departments in all patients and subgroups	128
20	Types of samples in all patients and subgroups	133
21	Age and gender of all patients as well as study subgroups	134
22	Types of empirical antibiotics given for all patients and subgroups before retrieval of specimens	135
23	Descriptive statistics for methicillin resistance by different methods	137
24	Comparison between FOX DD and E-test in all staphylococcal isolates	138
25	Detection of methicillin resistant staphylococci by FOX DD in subgroups	139

26	Detection of methicillin resisitant staphylococci by	141
	MIC (E-test) in subgroups	
27	Comaprison between FOX DD and E-test for	142
	detection of methicillin resistance in Subgroups	
28	Detection of methicillin resisitant staphylococci by	142
	ORSAB in subgroups	
29	Comparison between FOX DD and ORSAB in S.	143
	aureus isolates	
30	Comparison between E-test and ORSAB in S. aureus	143
	isolates	

List of Figures

No.	Figures	page
1	Pictures of <i>S. aureus</i> of same clonal origin on sheep	11
	blood agar plates after 48h incubation. Scale bar =	
	1 cm. (a) Normal-sized colonies. (b) Small colony	
	variants	
2	Virulence determinants of Staphylococcus aureus	11
3	Phases of biofilm development in Staphylococci	13
4	Chemical structure of beta-lacatm antibiotics	18
5	Schematic representation of the (A) <i>S. aureus</i> and	20
	(B) Escherichia coli murein monomers	
6	Action of ß-lactam antibiotics on the peptidoglycan	22
	structure of the bacterial cell wall	
7a	Induction of staphylococcal β-lactamase synthesis	31
	in the presence of the β -lactam antibiotic penicillin.	
7b	Mechanism of <i>S. aureus</i> resistance to methicillin	31
8	Representation of different types of ccr genes	37
9	Classification scheme for SCC <i>mec</i> type by <i>ccr</i>	40
	complex and <i>mec</i> complex type	
10	Slide coagulase test	49
11	Tube coagulase test	50
12	DNase test	53
13	Flow chart for identification of staphylococcus	56
	species	
14	Mannitol Salt Agar (MSA	57
15	Chromogenic MRSA Agar	60
16	S. aureus ID medium	60
17	A <i>Staphylococcus aureus</i> isolate tested by the E-test	65
	gradient diffusion method with vancomycin (VA),	
	daptomycin (DM), and linezolid (LZ) on Mueller-	
	Hinton agar	
18	Sccmec-orfX junction target by commercially	71
	available PCR systems	
19	Example of Syber Green I Binding to to dsDNA	74
20	Results of syber Green real-time PCR in	120
	amplification plot with cycles number on x axis and	
	florescence on y axis	
21	Result of positive control	121
22	Result of a positive isolate	121
23	Results of melting curve	122

24	Melting curve of positive control	122
25	Melting curve of the same positive isolate in figure	123
	(22)	
26	Disk diffusion test (MRCoNS)	125
27	Disk diffusion test (MSSA)	125
28	Disk diffusion test (MRSA)	126
29	E-test shows no intersection ellipse(MRCoNS)	128
30	E-test shows intersection ellipse (MSSA)	129
31	Etest shows intersection ellipse (MRSA)	129
32	Blue colonies on ORSAB: MRSA	130
33	Age in all patients and subgroups	135
34	Gender in all patients and subgroups	136

List of Abbreviation

MRSAmethicillin-resistant S. aureusCONScoagulase-negative staphylococci

PBP penicillin binding protein

PSPs penicillinase-stable penicillinsMIC Minimal Inhibitory Concentration

ORSAB Oxacillin Resistant Screening Agar Base

CRF coagulase reacting factor

IgG immunoglobulin G

TSST Toxic shock syndrome toxin

SQSsqualene synthetaseROSreactive oxygen speciesSCVSmall colony variantsDNADeoxyribonucleic acidSEstaphylococcal Enterotoxin

EFT exfoliative toxins

MSCRAMMS microbial surface components recognizing adhesive

matrix molecules

PIA polysaccharide intercellular adhesion

AtlE autolysin E.

Aap accumulatiom associated protein.

PSMs phenol-soluble modulins

Sarstaphylococcal accessory regulatorEmbpExtracellular matrix binding protein

sigB sigma factor

PSM Phenol-soluble modulin

AAP Accumulation Associated Protein FAME Fatty acid modifying enzyme accessory gene regulator Agr cerebro-spinal fluid **CSF UDP** Uridine diphosphate **PEP** phosphoenolpyruvic acid **UDP-GlcNAc** UDP-N-acetylglucosamine **UDP-MurNAc UDP-Nacetylmuramic** acid

L-Ala L-alanine

D-GluNH2 or D-GluCOOH D-glutamc acid

L-Lys L-lysine

D-Ala-D-AlaD-alanyl-D-alanineDAPL-diaminopimelic acid

CA clavulanic acid tazobactam

NI not included

EDTA Ethylenediaminetetraacetic acid

MBL Metallo-B-lactamases

ACT AmpC type
CMY Cephamycins
FOX Cefoxitin

TEM (Temoneira) name of patient

SHV Sulfhydryl variable

PC1 Penicillinase CTX Cefotaxime

PER Pseudomonas extended resistant

VEB Vietnam extended-spectrum β-lactamase

pseudomonas-specific enzyme

OXA Oxacillin

CepA Chromosomal cephalosporinase Ambler class A

KPC Klebsiella pneumoniae carbapenemase

SME Serratia marcescense enzyme

IMP Imipenem

VIM Verona integron-encoded metallo-β-lactamase

L1 Labile enzyme

Sfh Serratia fonticola carbapenem hydrolase

AmpC Ambler class C

IND *Chryseobacterium indologenes*

CphA Gene encoding carbapenem-hydrolyzing metallo-

beta-lactamase of Aeromonas hydrophila

cfiA Gene encoding Cephalosporinase of **Bacteroides**

fragilis

CAU Gene encoding metallo-beta-lactamase of *Caulobacter*

crescentus

UK United Kingdom

NIDR National Infectious Diseases Register

BlaZ gene encodes β-lactamase

blaR1 -mecR1 gene encoding a putative transmembrane signal

transducer

blaI -mecI gene encoding the repressor

mecA gene encodes methicillin resistance in staphylococci

BORSA borderline methicillin resistance in *S. aureus* **Fem** factors essential for methicillin resistance

Aux auxiliary genes

SCCmecStaphylococcal cassette chromosome mecOrfXopen reading frame with unknown functionAttBsccbacterial chromosomal attachment site of scc

IS insertion sequence

Ccr Cassette chromosome recombinases

Joining regions

IWG-SCC International Working Group on the Classification of

Staphylococcal Cassette Chromosome Elements

HA-MRSA Hospital-associated MRSA
CA-MRSA Community acquired MRSA
PVL Panton-Valentine leukocidin
ESRD End-stage renal disease

MSSA methicillin sensitive S. aureus

DNase Deoxyribonuclease **TBO** Toluidine blue O

PCR Polymerase Chain Reaction

NucCoaSpaNucleaseCoagulaseprotein A

OMSA Oxacillin Mannitol salt agar

MSA Mannitol Salt Agar
TAT Turnaround time

CLSI Clinical and laboratory standard institute

DD disk-diffusion

EUCAST European Committee on Antimicrobial Susceptibility

Testing

BSAC The British Society for Antimicrobial Chemotherapy

E-test Epsilometer testVA VancomycinDM DaptomycinLZ Linezolid

MRS methicillin resistant staphylococci
CAMHB cation-adjusted Mueller-Hinton broth

S Susceptible
I Intermediate
R Resistant

BD Becton Dickinson

mPCR Multiplex polymerase chain reaction

dsDNA Double stranded DNA

FDA Food and Drug Administration

EMRSA Epidemic MRSA strains

SSTI Skin and soft tissue infections

SA Staphylococcus aureus

REA Restriction Endonuclease Analysis

RFLP restriction fragment length polymorphism

PFGE Pulsed field gel electrophoresis

AP-PCR Arbitrarily primed polymerase chain reaction

RAPD random amplified polymorphic DNA

MLST Multilocus sequence typing

SLST Single-locus sequence typing

Sma I name in reference to *Serratia marcescens* from which

it was drived

TGP Toxin gene profile typing

PPE Personal Protective Equipments

CDC Centers for Disease Control and Prevention

ATCC American Type Culture Collection

FOX DD Cefoxitin disk diffusion test

H₂O₂ hydrogen peroxide

RNase ribonuclease

dNTP Deoxyribonucleotide triphosphate Taqenzyme from Themnus aquaticus

CtCycle thresholdTmMelting temperatureOSAoxacillin screen agarp-valueprobability value

PPV positive predictive value
NPV negative predictive value
SS statistically significant

PSE pseudomonas-specific enzyme

16S rRNA 16 subunit ribosomal ribonucleic acid

Fc region fragment crystallizable region

Contents

Subjects	No
List of tables	
List of figures	
List of abbreviation	v
Introduction	1
The aim of the work	4
Review of literature	5
I-Microbiological Basics of Staphylococcal Species	5
A-Morphology	5
B-Natural habitats	5
C-Classification of Staphylococci according to coagulase reaction	6
D-Role in disease.	8
Virulence factors for Staphylococcal infection	8
Clinical significance	15
II-Beta Lactam Antibiotics	17
A-Beta -Lactam Antibiotics	17
B-Beta-Lactamase Inhibitors	22
III-Methicillin Resistance in Staphylococci	27
1-Multiresistance	27
2-Epidemiological aspects	28
3-Mechanisms of staphylococcal resistance to B-lactams	29
4-Classification of MRSA infections	41
5-Routes of infection of MRSA	
6-Laboratory Diagnosis	46
Collection, transport, and storage of specimens	46
Direct Gram-stained smears	47
Isolation procedures	47
Identification of staphylococcal species	49
Methicillin (oxacillin) susceptibility testing	57
Oxacillin containing media	57
Disk Diffusion Test Minimum inhibitory concentration (MIC)	61 64
Agglutination tests for detection of specific surface proteins	66
Automated System	68
Molecular detection of methicillin resistance in staphylococci Flowcytometry	70 74

7-Epidemilogical typing of MRSA	
A- Phenotyping methods	
B-Genotyping methods	79
8- Control of infection:	
Identification of patients who are at higher risk for MRSA	88
Prevention of MRSA Colonization and Infection	
Decolonization	
Vaccination for Staphylococci	
Treatment of Staphylococcal Infections	98
Materials and Methods	
Results	
Discussion	
Conclusion	
recommendation	
Summary	
References	

Introduction

The Staphylococcus species are divided into two large groups. The first group known as coagulase positive staphylococci which is mainly represented by *Staphylococcus aureus*, a pathogen that can cause a variety of infections in immunocompetent patients ranging from cutaneous to systematic infections. The second group, known as coagulase negative staphylococci comprises diverse species that are members of the normal flora of humans, mammals and birds, and they are involved in infectious processes in immunocompromised patients or patients using catheters (*Martins and Cunha*, 2007; CDC, 2007).

Methicillin was the drug of choice for treatment of staphylococcal infections before resistance had developed against it. The first case of methicillin-resistant *S. aureus* (MRSA) was reported in 1961 (*Louie et al.*, 2000).

It is assumed that methicillin-resistance genes had evolved in coagulase-negative staphylococci (CoNS) and were then horizontally transferred among staphylococci. Staphylococci naturally have a protein in its cell wall penicillin binding protein (PBP), with trans-peptidase activity, play a key role in cell wall synthesis and are the target for B-lactam antibiotics. The methicillin-resistant strains produce modified PBP called PBP2a with low affinity for B-lactam antibiotics. Resistance to methicillin mediated by mecA gene, responsible for production of PBP2a. mecA located on a region of chromosome called SCCmec (*Vaez et al., 2011*).

Accurate detection ofmethicillin resistance Staphylococcal species by routine methods is difficult due to the presence of two subpopulation of S. aureus (one susceptible and another resistant) which may coexist within a culture. All cells in culture may carry the genetic information for resistance but a small number can express this kind of resistance in routine susceptibility testing performed in the laboratory. This phenomenon is termed heterogeneous resistance & occurs in Staphylococci resistant to penicillinase-stable penicillin such as oxacillin (Brown, 2001).

Accurate detection of *mecA*-mediated resistance to oxacillin and other penicillinase-stable penicillins (PSPs), i.e., methicillin, nafcillin, cloxacillin, dicloxacillin, and flucloxacillin, is necessary to ensure appropriate antimicrobial chemotherapy of staphylococcal infections (*Sasirekha et al.*, 2012)

There are many methods for detection of methicillin resistance in Staphylococcal species. Most laboratories use disk

diffusion method for routine tests. The gold standard for antimicrobial susceptibility testing has been the Minimal Inhibitory Concentration (MIC) determined by a dilution or E-test method. In recent years MIC methods has been replaced by molecular methods that detect mecA gene. However the use of these assays are largely restricted to reference centers & not available in most routine diagnostic laboratories (*Madigan & Martinko*, 2006; CLSI, 2007).

The aim of this study is to determine the reliability of different routine methods for detection of MRSA&MRCoNS.