

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING AUTOMOTIVE ENGINEERING DEPARTMENT

COMPARATIVE STUDY OF PERFORMANCE OF CONVENTIONAL AND REGENERATIVE BRAKING SYSTEMS IN HYBRID VEHICLES

A thesis presented in partial fulfilment of the requirements for the Masters of Science Degree in Mechanical Engineering (Automotive)

Ву

Eng. Fadi Samir Saadallah

Under the supervision of

Dr. Mohamed Abdelmawgood Saleh Dr. Nabila Shawky El Nahas Dr. Ibrahim Mohamed Omran

ACKNOWLEDGMENT

I would like to express my gratitude to all those who gave me the possibility to complete this thesis. I want to thank Pronox Egypt for helping me using their facility to build the chassis, Egyptian Engineering Agencies for giving me access to the brake tester, and Equipment Development Centre for giving me the opportunity to use all the electromechanical components used in their range of Electric Vehicles.

I am deeply indebted to my supervisor Dr Nabila El Nahas, the head of the Automotive Engineering Department in the Faculty of Engineering in Ain Shams University whose help, stimulating suggestions and encouragement helped me in all the time of research and for writing this thesis.

I am bound to Dr Abdelmawgood (mercy on him), who encouraged me in the very beginning to go ahead with my thesis.

I have furthermore to thank Dr Ibrahim Omran for his backing.

My former colleagues and friends supported me in the design, choosing and purchasing the mechanical components. I want to thank them for all their help, support, interest and valuable hints.

Especially, I would like to give my special thanks to my brother Karim whose support enabled me to complete this work.

TABLE OF CONTENTS

		PAGE
ACK	KNOWLEDGEMENT	i
LIST OF FIGURES		ii
LIS	T OF TABLES	iii
ABF	REVIATIONS	iv
LIS	T OF SYMBOLS	v
SUN	MMARY	vi
CH	APTER (1) INTRODUCTION	
1.1	CONVENTIONAL BRAKING SYSTEM	1
1.2	REGENERATIVE BRAKING SYSTEMS	2
1.3	THE BLENDED BRAKING	3
1.4	THE ELECTRIC VEHICLE	4
1.5	THE HYBRID VEHICLE	5
	.5.1 CLASSIFICATION OF HYBRID VEHICLES BY DRIVETRAIN STRUCTURE	6
	1.5.1.1Parallel Hybrid	6
	1.5.1.2 Series hybrid	7
	.5.2 CLASSIFICATION OF HYBRID VEHICLES BY DEGREE	7

CHAPTER (2) LITERATURE REVIEW

2.1 INTRODUCTION	9
2.2 LITTERATURE REVIEW	9
2.2.1 REGENERATIVE BRAKING ATTRIBUTES	9
2.2.2 BRAKE DYNAMICS AS FUNCTION OF TEMPERATURE RISE	15
2.2.3 BRAKE DYNAMICS AS FUNCTION OF EMISSIONS	16
2.3 AIM OF THE PRESENT STUDY	19
CHAPTER (3) EXPERIMENTAL WORK	
3.1 GENERAL FEATURES OF THE TEST RIG	20
3.2 THE DESIGN AND THE CONSTRUCTION OF THE TEST RIG	21
3.2.1 VEHICLE CHASSIS	21
3.2.1.1 Main Components mounted on the Chassis	22
3.2.1.2 Designing and Drafting the Test Rig	24
3.2.1.3 Workshop Drawings	33
3.2.1.4 The Chassis Fabrication	34
3.2.2 BRAKE TESTER	36
3.2.3 MEASURMENT FACILITIES	37
3.2.3.1 Measurement of Temperature	37
3.2.3.2 Measurement of Motor Performance	38

3.2.3.3 Measurement of Brake Pedal Forces and the Wheel Braking Torque	39
3.2.3.4 Measurement of Emissions	39
3.2.3.5 Measurement of Initial Speed	39
3.2.3.6 Measurement of Road Slope	40
3.2.3.7 Measurement of Tire Pressure	40
3.3 THE EXPERIMENTAL WORK	41
3.3.1 EXPERIMENTS	42
3.3.2 RESULTS	45
3.3.2.1 Result of Conventional Brake	45
3.3.2.2 Result of Regenerative Brake	47
CHAPTER (4) DISCUSSION AND ANALYSIS OF THE RESULTS	
4.1 EFFECT OF DIFFERENT OPERATING PARAMETERS	49
4.1.1 EFFECT ON CONVENTIONAL BRAKE	49
4.1.1.1 Effect of Brake Severity	49
4.1.1.2 Effect of Load	52
4.1.1.3 Effect of Coefficient of Adhesion	53
4.1.1.4 Effect of Road Slope	55
4.1.1.5 Effect of Tire Inflation Pressure	56
4.1.2 EFFECT ON REGENERATIVE BRAKE	57

4.1.2.1 Ef	fect of Brake Severity	57
4.1.2.2 Eff	fect of Load	60
4.1.2.3 Eff	fect of Coefficient of Adhesion	61
4.1.2.4 Eff	fect of Road Slope	63
4.1.2.5 Eff	fect of Tire Inflation Pressure	64
4.2 COMPARISO REGENERATIVE	ON BETWEEN CONVENTIONAL AND BRAKES	65
4.2.1 STOPPII	NG TIME	65
4.2.2 STOPPII	NG DISTANCE	69
4.2.3 HEAT G	ENERATED	71
4.2.4 SEVERE	CONDITIONS	72
` '	CONCLUSIONS AND ATIONS FOR FUTURE WORK	
5.1 CONCLUSIO	NS	75
5.2 RECOMMENDATIONS FOR FUTURE WORK		76
REFERENCES		78
APPENDICES		81
APPENDIX (A)	Storage and Propulsion Devices	
APPENDIX (B)	Classification of the Hybrid Vehicles	
APPENDIX (C)	Mechanical Components Specifications	

APPENDIX (D) Center of Gravity and Momentum Calculation

APPENDIX (E) Electromechanical Components Specifications

APPENDIX (F) Roller Brake Tester Specifications

APPENDIX (F) Infrared Thermometer Specifications

APPENDIX (G) General Tools Specifications

LIST OF FIGURES

FIGURE N:°	TITLE	PAGE
FIGURE (1.1)	Drum Brake	1
FIGURE (1.2)	Disc Brake	1
FIGURE (1.3)	Parallel Hybrid	6
FIGURE (1.4)	Series Hybrid	6
FIGURE (2.1)	Vehicle Speed and Travelled Distance	9
FIGURE (3.1)	Mechanical Components	23
FIGURE (3.2)	GE 48-volt DC Series motor	24
FIGURE (3.3)	Trojan Battery - Type T-860	24
FIGURE (3.4)	Snapshot of SolidWorks' interface	25
FIGURE (3.5)	Front Suspension Drafted on SolidWorks	26
FIGURE (3.6)	Motor mounting and link to the wheel hub	27
FIGURE (3.7)	The Rear Telescope Support	28
FIGURE (3.8)	Horizontal Plate for Weights	30
FIGURE (3.9)	Steering Compass	30
FIGURE (3.10)	Debris Chamber	31
FIGURE (3.11)	Brake Pedal	32
FIGURE (3.12)	Brake Pedal position Vs. Wheel Braking Torque	33
FIGURE (3.13)	Chassis Workshop Drawings	34

FIGURE (3.14)	The Whole Assembled Chassis on SolidWorks	35
FIGURE (3.15)	The Whole Constructed Chassis	36
FIGURE (3.16)	Roller Brake Tester	37
FIGURE (3.17)	Infrared Thermometer	38
FIGURE (3.18)	Scanner	38
FIGURE (3.19)	High-Precision Weight Balancer	39
FIGURE (3.20)	Tyre pressure inflator	40
FIGURE (4.1)	Stopping Distance vs. Initial Speeds	49
FIGURE (4.2)	Wheel Speed vs. Stopping Time	50
FIGURE (4.3)	Temperature Increase vs. Stopping Time	51
FIGURE (4.4)	Wheel Speed vs. Stopping Time	52
FIGURE (4.5)	Wheel Speed vs. Stopping Time	53
FIGURE (4.6)	Wheel Speed vs. Stopping Time	54
FIGURE (4.7)	Wheel Speed vs. Stopping Time	55
FIGURE (4.8)	Wheel Speed vs. Stopping Time	56
FIGURE (4.9)	Stopping Distance vs. Initial Speeds	57
FIGURE (4.10)	Wheel Speed vs. Stopping Time	58
FIGURE (4.11)	Generated Electricity vs. Stopping Time	59
FIGURE (4.12)	Wheel Speed vs. Stopping Time	60
FIGURE (4.13)	Wheel Speed vs. Stopping Time	61
FIGURE (4.14)	Wheel Speed vs. Stopping Time	62
FIGURE (4.15)	Wheel Speed vs. Stopping Time	63

FIGURE (4.16)	Wheel Speed vs. Stopping Time	64
FIGURE (4.17)	Wheel Speed vs. Stopping Time	65
FIGURE (4.18)	Wheel Speed vs. Stopping Time	66
FIGURE (4.19)	Wheel Speed vs. Stopping Time	68
FIGURE (4.20)	Wheel Speed vs. Stopping Distance	69
FIGURE (4.21)	Wheel Speed vs. Stopping Distance	70
FIGURE (4.22)	Temperature Increase vs. Stopping Time	71
FIGURE (4.23)	Wheel Speed vs. Stopping Time	72
FIGURE (4.24)	Generated Electricity vs. Stopping Time	73

LIST OF TABLES

TABLE N:°	TITLE	PAGE
TABLE (1.1)	Nominal Energy Density of Sources	5
TABLE (3.1)	Matrix of Experiments	42
TABLE (3.2)	Results of Conventional Brake	44
TABLE (3.3)	Results of Regenerative Brake	46

ABREVIATIONS

ABS Anti-Locking Brake System
AMC American Motors Corporation
AMT Automatic Manual Transmission

CAD Computer Aided Design

CG Centre of Gravity

CNG Compressed Natural Gas

CVT Continuously Variable Transmission

DC Direct Current

EMD Electro-Motive Diesel
EV Electrical Vehicle
HCM Half Car Model

HEV Hybrid Electrical Vehicle
ICE Internal Combustion Engine
IGBT Isolated Gate Bipolar Transistor
ISG Integrator Starter Generator
PHEV Parallel Hybrid Electric Vehicle

PLC Programmed Logical Control

PM Permanent Magnet PM Particulate Matter

PWM Pulse Width Modulator

QCM Quarter Car Model

RBS Regenerative Braking System RHS Rectangular Hollow Section

SOC State Of Charge

LIST OF SYMBOLS

W	Load in [N]
В	Brake Severity in [N.m]
δ	road slope in [%]
μ	coefficient of adhesion
Р	inflation pressure in [bar
t	stopping time in [Sec]
D	stopping distance in [m]
Т	temperature in [°c]

SUMMARY

The purpose of this study is to examine and analyze the braking performance of both 'Regenerative Braking' and 'Conventional Braking' systems in a comparative study conducted on a specially designed test bench.

The main research question engendering this thesis focuses primarily on the main aspects of the braking performance, which are the stopping distance and stopping time. Secondly, on the derivative symptoms such as the heat generated in the conventional system compared to the generated electricity from the regenerative system, the emission generated, the heat generated, etc...

The test rig consists of the following three main components: vehicle chassis, brake tester, and measurements tools to allow for the following test conditions: change in vehicle speed, road slope, steering angle, weight transfer and loads.

The experiments showed that the stopping distance was minimum for the cases of full load on either wet or dry ascending roads with the strong braking and during the use of a flat tyre.

The results of the temperature's increase in tests of 20-30 seconds showed a rise of around 6-8°C, nevertheless, the resulted amount of debris was quite insignificant due to the same short period tests.

It was also found that the regenerative braking is behaving with similarity with respect to the rate of stopping under almost all the different conditions. The performance of the regenerative braking under those 2 severities of braking of 120[N.m] and 250[N.m] showed between 0.1% and 0.25% increase in the SOC for single cycles.

It was also observed that there is a strong correlation between the regenerative electricity in terms of power in [Watt] from one side and the heat generated in the form of temperature increase in [°c] on the other side. In general, the stopping time and stopping distance in the regenerative braking is found to be between 5% and 10% more than it takes in the conventional braking, taking into consideration the pre-set braking torque.

CHAPTER (1) INTRODUCTION

1.1 CONVENTIONAL BRAKING SYSTEM

A brake is a device that decelerates a moving object such as a machine or vehicle by converting its kinetic energy into another form of energy. Most commonly, brakes use friction to convert kinetic energy into heat; brakes are often applied to rotating axles or wheels.

Frictional brakes are most common and can be divided broadly into 'shoe' or 'pad' brakes, using an explicit wear surface. Friction (pad/shoe) brakes are often rotating devices with a stationary pad and a rotating wear surface.

Common configurations include shoes that contract to rub on the outside of a rotating drum, such as a band brake; a rotating drum with shoes that expand to rub the inside of a drum, commonly called a 'drum brake'. As illustrated in Figure (1.1) Other configurations are possible such as pads that pinch a rotating disc, commonly called a 'disc brake' as shown in Figure (1.2) This type of braking is the one used in the experimental work.

Figure (1.1) Drum Brake

Figure (1.2) Disc Brake