AIN SHAMS UNIVERSITY FACULTY OF EHGINEERING IRRIGATION AND HYDRAULIC DEPARTMENT

RELIABILITY OF EQUATIONS DESCRIBING TURBULENT WALL JETS DOWNSTREAM GATES

By

Eng. Hend Saber Abdel-Hamed Alsayed Sallam

B.Sc. Civil Engineering Egypt, 2013

A Thesis submitted in partial fulfillment For the requirement of the Degree of Master of Science in Civil Engineering

Supervised by

Prof. Dr. Yehia Kamal Abdel-Monim

Professor of Irrigation and Drainage Engineering , Irrigation and Hydraulic Dept., Faculty of Engineering Ain Shams University, Cairo, Egypt

Dr. Yasser Elsayed Ibrahim Mostafa

Associate prof., Irrigation and Hydraulics Dept.
Faculty of Engineering
Ain Shams University, Cairo, Egypt

Dr. Mohammad Sadeek Gadelrab

Associate prof., Irrigation and Hydraulics Dept.
Faculty of Engineering
Ain Shams University, Cairo, Egypt

Cairo, Egypt 2013

STATEMENT

This dissertation is submitted to Ain Shams University for the M.Sc. Degree in Civil

Engineering, Irrigation and Hydraulics.

The work included in this thesis is carried out by the author, at Ain Shams University,

Faculty of Engineering, Irrigation and Hydraulics Department from October 2007 to January

2013.

No part of this thesis has been submitted for a degree or qualification at any other

university or institute.

Date: 2 / 1 /2013

Signature:

Name: Hend Saber Abdel-Hamed

ACKNOWLEDGEMNTS

First and foremost I am thankful to Allah the Almighty for his grace and mercy.

This work was carried out under the supervision of Prof. Dr. Yehia Kamal Abdel-Monim. Professor of Hydraulics, Irrigation and Hydraulic Dept., Faculty of Engineering, Ain Shams University. I present my deep thanks for his kind supervision, encouragement, guidance, advice and help from which I benefited a lot during this study.

I would like to express my deepest appreciation and sincere thanks to Dr. **Yasser Elsayed Ibrahim Mostafa** Associate prof., Irrigation and Hydraulics Dept. Faculty of Engineering, Ain Shams University. I owe him a lot of thanks for his great help, supervision and guidance through every step in my study until I finished it as it should be.

I wish to express my deepest appreciation and sincere thanks to Dr. **Mohammad Sadeek Gadelrab** Associate, Irrigation and Hydraulics Dept. Faculty of Engineering, Ain Shams University. For his appreciated help in this work, for his matchless supervision and sincere guidance.

My deep thanks and special appreciations to my father, mother, brothers, sister for their prayers, blessing, sacrifices, encouragements and support.

Finally, thanks are due to all those who, in one way or another, showed interest during the preparation of this research.

Eng. Hend Saber

Abstract

Wall Jets have a wide range of applications in hydraulic engineering especially in hydraulic structures such as gates, culverts and spillways .it has been a material for study from a very long time so a huge number of experiments (numerical, experimental and theoretical) have been performed concerning this issue so the analysis of these equations gains a great concern.

In this thesis a great concern is given to discussing the flow downstream wall jet and the scour caused by it since it has a great importance, wide range of applications and affect the stability of hydraulic structures and may cause loss of life. A description of different types of wall jets and simulation techniques is viewed in details in order to study three main topics.

The first topic is the validation of main equations describing the flow characteristics and scour caused by wall jets against a wide base of experimental data found in literature. Equations are identified, described and their parameters are clarified. Then equations are validated using experimental data and the limitations of each equation are presented in which it gives reasonable estimate since over estimation maybe considered as waste and under estimation may affect the stability of the structure and cause it to fail.

The second topic is applying sensitivity analysis technique for all used equations to define the most effective parameters for each equation.

The third topic is reliability simulation for some equations describing the scour caused by wall jet analyzed using Monte Carlo simulation technique. Different values of foundation dimensions are used in equations and analyzed using Monte Carlo technique to reach to most reasonable dimensions. Then a discussion of different cases for each equation is presented and future recommendations are mentioned for studying other judging factors to choose the most suitable dimensions.

Table of Contents

Chapter 1	Page
Introduction	1
1.1 General	1
1.2 Objectives of the Thesis	1
1.3 Organization of the Thesis	2
Chapter 2	
Literature Review	3
2.1. Classification of Jets	4
2.1.1. General	4
2.1.2. Free Jets	6
2.1. 3. Counter Flowing Wall Jets	6
2.1. 4. Turbulent Impinging Jets	7
2.1.5. Laminar and Turbulent Jets	8
2.1.6. Turbulent Buoyant Jets	8
2.1.7. Varied Shape Jets	8
2.1.8. Wall Jets	9
2.1.8.1. Plane turbulent denser Boussinesq-type wall jets	11
2.1.8.2. Submerged plane turbulent wall jets	11
2.1.8.2.1. Turbulent submerged axisymmetric jets	13
2.1.8.2.2. Submerged horizontal wall jets	13
2.1.8.2.3. Submerged and offset turbulent wall jets	13
2.1.8.3. Different nozzle shapes wall jets	13
2.1.8.4. 2-d and 3-d Turbulent Wall Jets	13
2.1.8.5. Inclined wall jets	14

2.1.8.6. Weak wall jets	15
2.1.8.7. Strong wall jets	15
2.1.9. Vertical jets	15
2.2. Flow Characteristics of Wall Jets	16
2.3. Equations Describing Wall Jet Phenomenon	18
2.3.1. Momentum Flux	18
2.3.2. Growth of length scale with distance	18
2.3.3. Flow discharge	18
2.3.4. Length of recirculating region	19
2.3.5. Fluid force coefficient	19
2.3.6. Flow velocity	19
2.3.7. Scour	21
2.3.7.1. Max Scour Depth	21
2.3.7.2. Volume of Sediments Removed Per Unit Width	21
2.3.7.3. Scour Length	22
2.4. Different Techniques Used For Equations Analysis	24
2.4.1. Reliability analysis techniques	25
2.4.1.1. Analytical methods	25
2.4.1.2. Point estimate methods	26
2.4.1.3. Simulation (exact) methods	26
2.4.2. Validation of equations	28
2.4.3. Sensitivity Analysis	29
Chapter 3	
Validation and Discussion of Equations	30
3.1 Introduction	30

3.2. Summary of Main Equations	30
3.2.1. Summary of Scour Equations	30
3.2.2. Scour Equations Selected For Validation Process	36
3.2.2.1. Depth of scour hole (for cohesionless soil)	37
3.2.2.2. Depth of scour hole (For cohesive soil)	46
3.2.2.3. Length of scour hole (For cohesive soil)	52
3.2.2.4. Length of scour hole (cohesionless soil)	58
3.2.3. Summary of Velocity Equations	63
3.2.4. Velocity Equations Selected For Validation Process	70
3.3. Sensitivity Analysis	87
Chapter 4	
Reliability Analysis Techniques	97
4.1. Introduction	97
4.2. Reliability	98
4.3. Reliability Analysis	99
4.4. Computation of Reliability	100
4.5. Reliability Analysis Techniques	100
4.5.1. The Exact methods	102
4.5.2. The First-Order, Second-Moment Methods (FOSM)	102
4.5.3. Point Estimate Method (PEM)	102
4.5.1.1. Direct Integration Method	102
4.5.1.2. Monte Carlo Analysis	103
4.5.1.3. Time-to-Failure Analysis	103
4.5.2.1. Mean-Value First-Order Second-Moment (MFOSM) Method	103

4.5.2.2. Advanced First-Order Second-Moment (AFOSM) Method	
4.5.3. Point Estimate Method	
4.5.3.1. Bivariate Point Estimate method	
4.5.3.2. Generalized point estimate method	
4.6. Another Classification for Reliability Analysis Different Techniques.	
4.6.1. Probabilistic Methods	
4.6.1.1. Reliability Index () Methods	
4.6.1.1.1. First Order Second Moment (Taylor Series).	
4.6.1.1.2. Advanced Second Moment (Hasofer-Lind)	
4.6.1.1.3. Point Estimate Method	
4.6.1.2. Time-Dependent (Hazard Functions)	
4.6.1.3. Monte Carlo Simulation	
4.6.1.4. Response Surface Modeling	
4.6.2. Non-Probabilistic Methods	
4.6.2.1. Historical Frequency of Occurrence	
4.6.2.2. Survivorship Curves (hydropower equipment)	
4.6.2.3. Expert Opinion Elicitation (EOE)	
4.7. Risk-Based Design of Water Resources Systems	
4.8. Monte Carlo Simulation Methods	
Chapter 5	
Reliability Analysis of Wall Jets Scour Equations	
5.1. Application of Monte Carlo Analysis and Risk-Based Analysis	
Chapter 6	
Conclusions and Recommendations for Future Research	
6.1. Conclusions.	

6.1.1. Validation of equations	159
6.1.1. 1. Equation (2-17)	159
6.1.1. 2. Equation (2-16)	160
6.1.1. 3. Equation (2-18)	160
6.1.1. 4. Equations (2-20) & (2-21)	160
6.1.1. 5. Equation (2-22)	160
6.1.1. 6. Equations (2-10) & (2-11) & (2-12) & (2-13) & (2-14) & (2-15)	161
6.1.2 Sensitivity analysis	161
6.1.3 Reliability analysis using Monte Carlo simulation technique	162
6.1.3.1. The depth of scour using equation (2-16)	162
6.1.3.2. The length of scour using equation (2-20)	162
6.1.3.3. The volume of sediments removed per unit width using equation (2-19)	162
6.2 Recommendations and Suggestions for Future Research	163

List of Tables

Table	<u>Title</u> <u>l</u>	<u>Page</u>
(3-1)	Scour equations selected for validation process	30
(3-2)	Calculated scour depth using equation (2-17)	38
(3-3)	Measured and calculated data for scour depth	40
(3-4)	Evaluation of calculated data using measured data from literature	43
(3-5)	Summary of Sui et al. (2008) scour depth equation evaluation	45
(3-6)	Measured and calculated data for depth of scour	46
(3-7)	Evaluation of calculated data using measured data from literature	49
(3-8)	Summary of Rajaratnam et al. (2002) and Subhasish Dey et al. (2003) scour depth equation evaluation	50
(3-9)	Recommended limits for use of equations (2-16), (2-18) for percentage error ranging from 20% to -20%	ge of 51
(3-10)	Measured and calculated data for scour length	52
(3-11)	Evaluation of calculated data using measured data from literature	55
(3-12)	Summary of Sequeiros et al. (2005) and Rajaratnam et al. (2002) length of scour equation evaluation	56
(3-13)	Recommended limits for use of equations (2-21), (2-20) for percentage error ranging from 10% to -10%	ge of 57
(3-14)	Measured and calculated data for scour length	58
(3-15)	Evaluation of calculated data using measured data from literature	60
(3-16)	Summary of Sequeiros et al. (2005) scour length equation evaluation	61
(3-17)	Recommended limits for use of equation (2-22) for percentage of ranging from 10% to -10%	error 62
(3-18)	Wall Jets Velocity Equations Selected For Validation Process	63
(3-19)	Measured Data for u_m/U_o used in Validation Process	. 72
(3-20)	Calculated Data for u _m /U _o using equations found in literature	74

(3-21)	Measured data and calculated Data for u_m/U_o using equation (2-11)	78
(3-22)	Measured data and calculated Data for u_m/U_o using equation (2-15)	81
(3-23)	Measured data and calculated Data for u_m/U_o using equation (2-10), (2-13), (2-14)	82
(3-24)	Summary of main velocity equations recommended limits use	for 85
(5-1)	Summary results of Monte Carlo simulation (in case of resistance =50mm)	116
(5-2)	Summary results of Monte Carlo simulation (in case of resistance=60mm)	119
(5-3)	Summary results of Monte Carlo simulation (in case of resistance =70mm)	122
(5-4)	Summary results of Monte Carlo simulation (in case of resistance =80mm)	125
(5-5)	Summary results of Monte Carlo simulation (in case of resistance =200mm)	129
(5-6)	Summary results of Monte Carlo simulation (in case of resistance =250mm)	132
(5-7)	Summary results of Monte Carlo simulation (in case of resistance =300mm)	135
(5-8)	Summary results of Monte Carlo simulation (in case of resistance=350mm)	138
(5-9)	Summary results of Monte Carlo simulation (in case of resistance = $0.05\text{m}^3/\text{m}$)	142
(5-10)	Summary results of Monte Carlo simulation (in case of resistance = $0.08\text{m}^3/\text{m}$)	146
(5-11)	Summary results of Monte Carlo simulation (in case of resistance = $0.1 \text{m}^3/\text{m}$)	150
(5-12)	Summary results of Monte Carlo simulation (in case of resistance = $0.2\text{m}^3/\text{m}$)	154

List of Figures

<u>Figure</u>	<u>Title</u> <u>Page</u>
(2-1)	Classifications of turbulent jets
(2-2)	Typical jet regions for submerged or free jets in a confined basin 4
(2-3)	Jet flow behavior. (Rajaratnam (1976), Abramovich (1963), Fischer et al. (1979))
(2-4)	Schematic definition of a free jet. (Shinneeb, 2006)6
(2-5)	Schematic definition of free and submerged countercurrent jets. (Abdel-Monim, 2003)
(2-6)	Geometry of the flow from a jet impinging. (Beltaos and Rajaratnam, 1974)
(2-7)	Normally impinging jet with cross flow (Knowles and Bray, 1992)8
(2-8)	Schematic of the Kelvin-Helmholtz (K-H) vortices in the near field of an axisymmetric jet. (Wang, 2010)
(2-9)	The schematic structure of the wall jet flow. (Barenblatt et al., 2005)
(2-10)	Definition sketch for denser wall jet. (Rajaratnam and Subramanyan, 1986)
(2-11)	Schematic diagrams for submerged wall-jets. (Dey et al., 2010) 12
(2-12)	Definition sketch for Circular turbulent wall jets. (Seo et al., 1998)
(2-13)	Schematic diagram of the velocity structure of a three dimensional wall jet. (Herlina et al., 2002)
(2-14)	Model for an inclined wall jet. (Newman, 1961)14
(2-15)	Schematic Diagram of Vertical Turbulent Plane Jet Impinging onto Free Surface with Four Flow Regimes: ZFE, ZEF, ZSI, and ZHJ (Kuang et al., 2001)
(2-16)	Definition sketch for the classical wall jet. (Karim et al., 2001) 16
(2-17)	Definition of scour parameters. (Sui et al., 2008)
(2-18)	Certainty and uncertainty in the information world (Ross, 1995) 23

(2-19)	Different Techniques of evaluating and generating equations	24
(2-20)	Description Scheme for sensitivity analysis. (Saltelli, May 1999)	29
(3-1)	Experimental setup. (Rajaratnam et al., 2002)	32
(3-2)	Schematic view of scour hole downstream gate. (Dey and Bernhard, 2	2003)
(3-3)	Plane wall jet tests on sewer sediment. (Sequeiros et al., 2005)	34
(3-4)	Sketch for a single jet experiment. (Sequeiros et al., 2005)	35
(3-5)	Comparison between different measured data of scour depth and calcuscour depth using equation (2-17) with respect to $F_o \times (ER)^{0.1} / TWR$	lated 42
(3-6)	Scatter plot between measured and calculated scour depth using equation (2-17)	42
(3-7)	Relationship between nondimensional scour depth d_s/b_o and nozzle velocity (U_o) using equations (2-16) and (2-18)	47
(3-8)	Scatter plot between measured and calculated scour depth using equation (2-16)	48
(3-9)	Scatter plot between measured and calculated scour depth using equation (2-18)	48
(3-10)	Comparison between different measured data for the scour length and calculated data for the scour length using equations (2-21) and (2-20) with respect to $-c/c$	53
(3-11)	Scatter plot between measured and calculated scour length using equation (2-21)	. 54
(3-12)	Scatter plot between measured and calculated scour length using equation (2-20)	. 54
(3-13)	Comparison between different measured data for the scour length and calculated data for the scour length using equation $(2-22)$ with respect to F_0 .	59
(3-14)	Scatter plot between measured and calculated scour length using equation (2-22)	60
(3-15)	(a) Definition sketch; (b) flow pattern (Rajaratnam and Ead, 2002)	64
(3-16)	Definition sketch for wall jets on corrugated beds (Ead and Rajaratnam, 2004)	65

(3-17)	Sketch of model and coordinate system. (Huai Wen-xin et al., 2009)	66
(3-18)	Submerged flow below sluice gate. (Rajaratnam et al., 1965)	68
(3-19)	Schematic illustration of the experimental set-up in stream wise. (Helina et al., 2002)	. 69
(3-20)	Scatter plot between measured and calculated velocity of flow using equation (2-10)	75
(3-21)	Scatter plot between measured and calculated velocity of flow using equation (2-11)	76
(3-22)	Scatter plot between measured and calculated velocity of flow using equation (2-12)	. 76
(3-23)	Scatter plot between measured and calculated velocity of flow using equation (2-13)	77
(3-24)	Scatter plot between measured and calculated velocity of flow using equation (2-14)	7
(3-25)	Scatter plot between measured and calculated velocity of flow using equation (2-15)	78
(3-26)	Comparison between different measured data for the velocity of flow and calculated data for the velocity of flow using equation (2-11) with respect to x/L	80
(3-27)	Comparison between different measured data for the velocity of flow and calculated data for the velocity of flow using equation (2-15) with respect to $z/z_{m/2}$	81
(3-28)	Comparison between different measured data for the velocity of flow and calculated data using equations (2-10), (2-13), (2-14) with respect to x/b _o	84
(4-1)	Reliability and probability of failure. (Patev , 1993)	99
(4-2)	demand and capacity. (Patev , 1993)	99
(4-3)	Different Reliability Analysis Techniques	101
(4-4)	Reliability Analysis Techniques Classifications	105
(4-5)	Parametric deterministic model maps a set of input variables to a set of output variables (Wittwer, 2004)	110
(5-1)	No. of cycles with respect to safety factor	. 117

(5-2)	Variation of reliability with respect to safety factor
(5-3)	Variation of reliability with respect to
(5-4)	Variation of reliability with respect to nozzle diameter as a function in no. of cycles
(5-5)	Variation of reliability with respect to no. of cycles
(5-6)	No. of cycles with respect to safety factor
(5-7)	Variation of reliability with respect to safety factor
(5-8)	Variation of reliability with respect to
(5-9)	Variation of reliability with respect to nozzle diameter as a function in no. of cycles
(5-10)	Variation of reliability with respect to no. of cycles
(5-11)	No. of cycles with respect to safety factor
(5-12)	Variation of reliability with respect to safety factor
(5-13)	Variation of reliability with respect to
(5-14)	Variation of reliability with respect to nozzle diameter as a function in no. of cycles
(5-15)	Variation of reliability with respect to no. of cycles
(5-16)	No. of cycles with respect to safety factor
(5-17)	Variation of reliability with respect to safety factor
(5-18)	Variation of reliability with respect to
(5-19)	Variation of reliability with respect to nozzle diameter as a function in no. of cycles
(5-20)	Variation of reliability with respect to no. of cycles
(5-21)	Variation of reliability with respect to safety factor for different values of resistance (scour depth)
(5-22)	No. of cycles with respect to safety factor
(5-23)	Variation of reliability with respect to safety factor
(5-24)	Variation of reliability with respect to