

Ain Shams University - Faculty of Medicine Department of Anesthesiology, Intensive Care and Pain Management

Indications for Postoperative Intensive Care Unit Admission between Anticipation and Urgency

Essay

Submitted for Partial Fulfilment of Master Degree in Anesthesia

Presented by

Maha Salah Omar Ismail Mansour (M.B., B.Ch.)

Under Supervision of **Prof. Dr. Ahmed Ibrahim Ibrahim**

Professor of Anesthesiology,
Intensive Care Medicine
& Pain Management
Faculty of Medicine - Ain Shams University

Dr. Hanan Mahmoud Farag

Assistant Professor of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine - Ain Shams University

Dr. Ayman Ahmed Abdel-Latif

Assistant Professor of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University

LIST OF CONTENTS

Title	Page
♦ List of Tables	I
♦ List of Figures	III
♦ List of Abbreviations	IV
• Introduction	١
• Review of Literature:	
Preoperative Anticipation of Postoperative Intensive Care Unit Admission	۰ ٦
 Intraoperative Events Indicating Postoperative Intensive Care Unit Admission 	۲۸
Postoperative Events Indicating Intensive Care Unit Admission	٦٦
• Summary	۸۲
♦ References	۸٥
Arabic Summary	

LIST OF TABLES

Tab. No	Title Page	
Table (\):	(ASA) physical status classification ^V	_
Table (۲):	Modified ASA Physical Status (\forall grades)	
Table ("):	Charlson Comorbidity Index	
Table (٤):	Revised Cardiac Risk Index	
Table (°):	NYHA classification	
Table (്):	Newer approach of the classification of heart failure according to American College of Cardiology and the American Heart Association	
Table (^v):	Child-Pugh scoring system	
Table (^):	Stages of chronic kidney diseases	
Table (٩):	Gradients of the severity of pulmonary disease based on PFT values	
Table (' ·) :	Brunelli score of factors associated with risk of ICU admission after thoracic	
Table (\\):	Poor outcome associated with tachycardia ۲۲	
Table (۱۲):	Predisposing factors for pulmonary aspiration under general anesthesia ٤٠	
Table (۱۳):	Clinical signs of malignant hyperthermia°	
Table (\\\ \(\):	Presentation of TURP syndrome	
Table (\°):	Management of thyroid storm	

LIST OF TABLES (CONT.)

Tab. No	Title Pa	
Table (۱٦):	POSSUM physiological variables	
Table (\\):	POSSUM operative severity variables	
Table (\^):	Equation in POSSUM, P-POSSUM, and Cr-POSSUM scoring system	
Table (۱۹):	The V-point surgical Appar Score	
Table (۲۰):	Comparison between postoperative scores ^ү ү	
Table (۲۱):	Example of objective parameters model YA	
Table (۲۲):	Specific conditions determine ICU admission	

LIST OF FIGURES

Fig. No	Fig. No Title	
Figure (\):	Bariatric surgery	۲٦
Figure ([†]):	Maxillofacial reconstructive surgery	۲۷
Figure (*):	A systemic approach to extubation	٣٤
Figure (٤):	Laryngeal edema	۳٦
Figure (°):	Unilateral and bilateral vocal cord paralysis	٣٧
Figure (^{\(\)}):	Tracheomalacia	٣٨
Figure ([∨]):	Tension pneumothorax after chest tube insertion	٤٢
Figure (^):	Cardiac tamponade	٤٦
Figure (٩):	Massive pulmonary embolism	٤٦
Figure (\.):	Radiological finding of pulmonary edema	٤٩
Figure (' '):	Dysrhythmias	٤٩
Figure (\Y):	Massive pulmonary embolism	٥٢
Figure (\\"):	Cardiac arrest	○ ٤
Figure (\\\cdot\):	Mechanism of malignant hyperthermia .	00
Figure (\°):	Stroke	09

LIST OF ABBREVIATIONS

Abbrev.	Full Term
ACS	. American College of Surgeons
	. Acquired immune deficiency syndrome
AIMS	. Australian Incident Monitoring Study
ASA	. American Society of Anesthesiologists
ВМІ	. Body mass index
BP	.Blood pressure
BSA	.Body surface area
BUN	.Blood urea nitrogen
CCI	. Charlson Comorbidity Index
COPD	. Chronic obstructive pulmonary diseases
CPAP	. Continuous positive airway pressure
Cr-POSSUM	Colorectal Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity
CRS	. Comprehensive risk score
CVP	. Central venous pressure
DIC	. Disseminated intravascular coagulation
DLCO	. Diffusing lung capacity for carbon monoxide
ECF	. Extracellular fluids
ECG	. Electrocardiogram
E-PASS	. Estimation of Physiologic Ability and Surgical Stress
ESICM	. European Society of Intensive Care Medicine

LIST OF ABBREVIATIONS (CONT.)

Abbrev.	Full Term
FEV	Forced expiratory volume
	Fraction of inspired oxygen
FVC	Forced vital capacity
GCS	Glasgow Coma Scale
GFR	Glomerular filtration rate
HDU	High dependency unit
ICF	Intracellular fluids
ICU	Intensive care unit
IDDM	Insulin-dependent diabetes mellitus
INR	International Normalized Ratio
IPPV	Intermittent Positive Pressure Ventilation
JVP	Jugular venous pressure
MAP	Mean arterial pressure
MG	Myasthenia gravis
мн	Malignant hyperthermia
NSAIDs	Non-steroidal anti-inflammatory drugs
NYHA	New York Heart Association
oss	Operative severity score
PaO 7	Partial pressure of arterial oxygen
PAR	Pressure-adjusted heart rate
PE	Pulmonary embolism
PEEP	Positive end-expiratory pressure
PFTs	Pulmonary function tests

LIST OF ABBREVIATIONS (CONT.)

Abbrev.	Full Term
POSSUM	. Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity
P-POSSUM.	Portsmouth Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity
PRS	. Preoperative risk score
PS	. Physiological score
RCRI	. Revised Cardiac Risk Index
SAS	. Surgical Apgar Score
SGOT	. Serum glutamic oxaloacetic transaminase
SOB	. Shortness of breath
SSS	. Surgical stress score
SVR	. Systemic vascular resistance
TURP	.Transurethral resection of prostate
VA	. Veterans Administration
vc	. Vital capacity

ACKNOWLEDGEMENT

First and above all my deepest gratitude and thanks to **Allah**, for achieving any work in my life.

I would like to express my special cordial thanks, endless gratitude and appreciation to **Prof. Dr. Ahmed Ibrahim Ibrahim**, Professor of Anesthesiology, Intensive Care Medicine and Pain Management, Faculty of Medicine, Ain Sham University; for giving me the opportunity to work under his meticulous supervision. His honest assistance and patience make me truly indebted to his.

Words stand short to express my deep appreciation for **Dr. Hanan Mahmoud Farag,** Assistant Professor of Anesthesiology, Intensive Care Medicine and Pain Management Faculty of Medicine, Ain Sham University, for her continuous help and support throughout this work.

I am so grateful to **Dr. Ayman Ahmed Abdel-Latif,** Assistant Professor of Anesthesiology, Intensive Care Medicine and Pain Management, Faculty of Medicine, Ain Sham University, he patiently gave me much of his time, experience, valuable supervision and support that can not be expressed by words.

Finally, many thanks for my family for their encouragement and support.

Maha Salah Omar Ismail Mansour

هِ اللهِ اللهُ اللهِ اللهُ اللهِ اللهُ اللهِ المُلْمُ المُلْمُ المُلْمُ المُلْمُ اللهِ اللهِ اللهِ المُلْمُ المُلْمُ المُلْمُ المُلْمُ المُلْمُ اللهِ المُلْمُ المُلْمُلِي المُلْمُلِي المُلْمُلِي المُلْمُلِي المُلْمُلِي المُلْمُلِي المُلْمُ

صدق الله العظيم ...سورة البقرة آية (٣٢)

The concept of intensive care unit (ICU):

In the 'Ao's during the Crimean War, it was the site which defined the pioneering contribution of what became Critical Care by Florence Nightingale, who is generally viewed as the parent of professional nursing. Nightingale segregated the most severely battle injured soldiers and bedded them in close proximity to the nursing station so that they might receive more "intensive nursing care" (Weil and Shoemaker, * • • • •).

In 1977, the concept of postoperative recovery was modelled by Dr. Walter Dandy who organized a neurosurgical postoperative care unit at Johns Hopkins Hospital in Baltimore, enlisting specialized nursing staff. Professional nurses therefore became the first bedside specialists rendering critical care under the direction of neurological surgeons. This initial intensive care also became a model for postoperative recovery units, which provided intensive postoperative management for military causalities during the Second World War (Byan, 1991).

Bjorn Ibsen in Denmark utilized manual methods of positive pressure ventilation by recruiting medical students who

- Current complain of chest pain considered secondary to myocardial ischemia.
- Use of nitrate therapy.
- ECG with pathological Q waves.

~. History of congestive heart failure:

- History of congestive heart failure.
- Pulmonary edema.
- Paroxysmal nocturnal dyspnea.
- Bilateral rales or S^{\gamma} gallop.
- Chest radiograph showing pulmonary vascular redistribution.

4. History of cerebrovascular disease:

- History of transient ischemic attack or stroke.
- •. Preoperative treatment with insulin.

$\$ Preoperative serum creatinine $> \$, $\$ mg/dL.

Table (4): Revised cardiac risk index (Andrew and Lee, **7 · · 7**):

Points	Class	Risk
•	I	٠,٤٪
١	II	٠,٩٪
4	III	٦,٦٪
♥ or more	IV	11%

Anesthesia and surgery combined are independent risk factors for ischemic stroke during the perioperative period (Wong et al, (*...). Patients can experience hypotension secondary to general anesthesia, fluid loss, and blood loss (*Bernstein*, * · · * 7).

Previous cerebrovascular events were most predictive of perioperative stroke (*Selim*, $\gamma \cdot \cdot \gamma$).

Delayed recovery from general anesthesia is the main symptoms. Patient may develop disturbed level of consciousness, unequal pupils, motor impairment and sensory impairment.

General supportive care and prevention of complications are also important to patients with perioperative stroke. This may be best achieved by moving the surgical patient to an Acute Stroke Unit, where management is coordinated by stroke neurologists. **Partial** airway obstruction, hypoventilation, aspiration pneumonia, and atelectasis are common causes of hypoxia that may worsen the brain injury. Both hypertension and hypotension are associated with poor outcome after stroke. Urgent correction of common postoperative causes of hypotension, including volume depletion, blood loss, myocardial ischemia or arrhythmias, may improve neurologic outcomes (Julie et al, Y . 11).

utilized bag ventilation for the victims (Ristagno and Weil, Y . . 9).

The modern ICU had evolved in the late 190.s in a historical sequence beginning a century earlier with a site of care in proximity to and with the loyalty of professional nursing talent. Recruitment and training of special nursing and medical expertise followed in the mid-Y:th century. Increasing capability of professionals who were prepared to implement life support interventions followed the introduction of monitors, measurements, and life support technologies. The post anesthesia recovery units maybe viewed, at least in part, as predecessors of the ICUs as we know them today. The first surgical ICU was established in Baltimore, and, in 1977, in the University of Pittsburgh. In 1971, the Society of Critical Care Medicine was formed (*Ristagno and Weil*, $^{r} \cdot \cdot ^{q}$).

The ICU serves as a place for monitoring and care of patients with potentially severe physiological instability requiring technical and/or artificial life support. The level of care in an ICU is greater than that available on the floor or intermediate care unit. Care in the ICU differs from other hospital units; seriously ill patients require close observation

and monitoring. Specially trained nurses care for one or two patients at a time, each shift. ICU doctors are specially trained critical care doctors. Patients may have special equipment in their room, depending on their unique situation and condition. The equipment in the ICU may seem overwhelming. Patients are connected to machines to monitor their heart, blood pressure, and respiratory rate. Ventilators help some patients breathe until they are able to breathe on their own (Multz et al, 1991).

ICU Admissions:

Over ξ , % of ICU admissions are for postoperative patients. An unplanned admission to an ICU within 75 hours of surgery is an event that most patients and physicians would consider to be an important adverse outcome. Such an unfavourable outcome results from an amalgamation of inherent risk factors surrounding a combination of coincidences and even misjudgements in the perioperative period. The multifactorial interaction of patient, anesthesia and surgical variables determines overall patient risk. Early recognition and intervention remains the key to avoidance of unfavourable outcome (Rose et al, 1997).