Cardiac Dysfunction Among Hemodialysis Patients with Metabolic Syndrome

Thesis

Submitted for Partial Fulfilment of Master Degree in

Internal Medicine

By

Magid Mohamed Mohamed Shahin

M.B.,B.Ch.

Under supervision of

Prof. Dr. / Abdel- Bassit El-shaarawy Abdel-Azeem

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Dr. Yasser Mahmoud Elshahawy

Lecturer of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Dr. Dawlat Hussein Sany

Lecturer of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2012

Acknowledgement

First and foremost thanks are due to **ALLAH** who gave me the strength to fulfill this work.

I would like to express my deep gratitude and appreciation to, Prof. Dr. AbdelbassitElshaarawyAbdelazeem, Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, For his generous supervision, keen interest and precious time he offered me througth out this study.

I wish also to express my deep gratitude to Dr. Yasser Mahmoud Elshahawy, lecturer of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for his invaluable efforts and kind guidance throughout this work.

I wish also to express my deep gratitude to *Dr. Dawlat Hussein Sany*, lecturer of Internal Medicine& Nephrology, faculty of Medicine, Ain Shams University, for her continous support, valuable remarksand for offering me much of her time and effort through out this study.

My thanks should extend to all my eminent professors and staff members of Internal Medecine Department, Ain Shams University.

> Magid Mohamed Shahin 2012

Dedication
I WOULD LIKE TO DEDICATE THIS THESIS TO
THE SOUL OF MY MOTHERAND TO MY
FATHER; TO THEM I WILL NEVER FIND
ADEQUATE WORDS TO EXPRESS MY
GRATITUDE.

Contents

Introduction		
Aim of the work		
Review of literature		
 History of metabolic syndrome 	5	
 Metabolic syndrome, Chronic kidney disease and 	10	
Cardiovascular disease		
 Obesity and Obesity paradox 	48	
Patients and methods		
Results		
Discussion		
Summary & Conclusion		
References		
Arabic Summary		

List of abbreviations

4 10341	ar rate or
1-ADMA	asymmetric-dimethyl arginine
ABPM	ambulatory blood pressure monitoring
ACR	Albumin: creatinine ratio
ADMA/DDAH	asymmetric dimethylarginine/ dimethylarginine dimethylaminohydrolase
AHA/NHLBI	American Heart Association/National Heart, Lung, and Blood Institute
AMPK	AMP activated protein kinase
APKD	Adult Polycystic Kidney Disease
apo(a)	apolipoprotein(a)
ASA	Acetyl salicylic acid
ASCOT-LLA	Anglo-Scandinavian Cardiac Outcomes TrialLipid Lowering Arm
AURORA	A Study to Evaluate the Use of Rosuvastatin in Subjects on Regular Hemodialysis
BMI	Body mass index
BP	Blood pressure
BV	Blood volume
CAD	Coronary artery disease
CETP	cholesteryl ester transfer protein
CKD	Chronic kidney disease
CVD	Cardiovascular disease
D.M	Diabetes mellitus
DBP	Diastolic blood pressure
DW	dry weight
ECV	extracellular volume
EF	Ejection fraction
EGIR	European Group for the Study of Insulin Resistance
ELFA	enzyme immunoassay sandwich method with a final flurescent detection
EPO	Erythropoietin
ESRD	end-stage renal disease
	Fasting blood sugar
F.B.S	free fatty acid
FFA	Glomerular filteration rate
GFR	
HD	Hemodialysis
HDL-C	High density lipoproteins-C Heart failure
HF MMG G A L A	
HMG-CoA reductase	hydroxyl-3-methylglutaryl-CoA reductase
HMW	high molecular weight Homeostatic Model Assessment of Insulin Resistance
HOMA-IR	
HPS	Heart protection study
ICAM-1	Intercellular Adhesion Molecule 1
IDF	International Diabetes Federation
IDH	intra-dialytic hypotension
IDL	intermediate-density lipoprotein
IGF-1	Insulin-like Growth Factor-1
IHD	Ischemic heart disease
IL-6	Interleukine-6
iNOS	Inducible Nitric oxide synthases
IR	Insulin resistance
IVSd	Thickness of Interventricular septum
K/DOQI	the Work Group for Kidney Disease Outcomes Quality Initiative
KDIGO	Kidney disease improving global outcomes
LCAT	lecithin-cholesterol acyltransferase
LDL	Low density lipoproteins
LMW	low molecular weight
In CRP	natural logarithm (geometric means)
Lp(a)	Lipoprotein (a)
LVH	Left ventricular hypertrophy
LVIDd	Internal diameter of left ventricle at end diastole
LVM	Left Ventricular Mass
LVMI	Left Ventricular Mass Index
MAP	Mean arterial pressure
MCP-1	Monocyte chemotactic protein-1
MDRD	Modification of Diet in Renal Disease study

MetS	Metabolic syndrome
NCEP-ATP III	National Cholesterol Education Program Third Adult Treatment Panel
NF-kB	nuclear factor kappa-light-chain-enhancer of activated B cells
NHANES III	The third National Health and Nutrition Examination Survey
NICE	National institute of clinical excellence
NO	nitric oxide
NS	nephrotic syndrome
PAI-1	plasminogen activator inhibitor-1
PCR	Protein:creatinine ratio
PD	Peritoneal dialysis
PG	Plasma glucose
PKCs	Protein Kinase-C
PPAR	peroxisome proliferator-activated receptors alpha
PRA	plasma renin activity
PTH	parathormone
PVD	Peripheral vascular disease
PWd	Thickness of posterior wall in end diastole
QUICKI	Quantitative Insulin Sensitivity Check Index
RAAS	rennin angiotensin-aldosterone system
RCTs	randomized controlled trials
ROS	reactive oxygen species
RPF	renal plasma flow
SBP	Systolic blood pressure
SERBP	sterol regulatory element binding proteins
SNS	sympathetic nervous system
SPR	solid phase receptacle
TG	Triglycerides
TGF-β	Transforming Growth Factor-β
TGF-β1	Transforming Growth Factor-ß1
TNF-α	tumor necrosis factor-α
U.A	Uric acid
VA-HIT	The Veterans Affairs HDL Intervention Trial
VLDL	Very Low Density Lipoproteins
VSMC	vascular smooth muscle cell
vWF	von Willebrand factor
WC	Waist circumference
WHO	World Health Organization

List of Tables

NO	Tables of Review	Page
1	Current definitions of the metabolic syndrome	8
2	Cardiovascular risk factors in CKD	34
NO	Tables of Results	Page
1	The patients' demographic data and the baseline characteristics	60
	according to metabolic syndrome status	
2	The laboratory and echocardiographic data of all patients and	61
	comparison between patients with and without metabolic syndrome	
3	CVD according to MetS status	62
4	The prevalence of MetS components, laboratory and echocardiographic	63
	data according to gender	
5	CVD according to gender	64
6	Metabolic syndrome components according to diabetic status	66
7	The frequency of metabolic syndrome components in all participants and	
	according to diabetic status	
8	Frequency of MetS components in hemodialysis patients	68
9	Mean CRP levels according to metabolic syndrome components	73
10	Pearson's correlation coefficients and regression coefficients between	73
	MetS components and In-CRP	
11	Multivariate regression analysis for ln-CRP as the dependent variable	74
12	Pearson's correlation coefficients and regression coefficients between	75
	MetS components and LVMI	
13	Multivariate regression analysis for LVMI as the dependent variable	75

List of Figures

NO	Figures of Review	Page
1	Role of MetS in the Development of CKD	11
2	The bidirectional relationship of IR and CKD and their combined effect	12
	on the cardiovascular system	
3	Obesity - induced renal injury and potential targeted treatments	17
4	Potential mechanisms of renal dysfunction related to inflammatory	18
	cytokines and lipotoxicity in metabolic syndrome	
5	Anti-atherogenic and insulin- sensitizing actions of adiponectin	21
6	Hypoadiponectinemia directly promotes the pathological reactions in	22
	cardiovascular system	
7	The pro-inflammatory and toxic effects of lipids on the kidney	26
8	Hyperfiltration and hypertension- hemodynamic consequences of	31
	obesity	
9	Complex pathogenesis of chronic kidney disease (CKD) and	33
	cardiovascular disease (CVD)	
10	Results of all risk factors in CKD	35
11	The cluster of co-morbidities associated with and aggravated by obesity	48
NO	Figures of Results	Page
1	The prevalence of MetS components according to gender	65
2	CRP level according to BMI category	69
3	Percentage of patients with CRP levels > 10 μg/l according to BMI	70
	category	
4	Mean CRP according to metabolic syndrome and obesity status	71
5	Mean CRP levels according to number of MetS components	72
6	correlation between LVMI and MAP	76
7	correlation between EF and MAP	76
8	correlation between EF and MAP	77
9	correlation between LVMI and MAP	78

Cardiac Dysfunction Among Hemodialysis Patients With Metabolic Syndrome

Protocol of Thesis

Submitted for Partial Fulfilment of M.S Degree in

Internal medicine

By

Magid Mohamed Mohamed Shahin

M.B.S.CH

Under supervision of

Prof. Dr. Abdel- Bassit El-shaarawy Abdel-Azeem

Professor of Internal medicine&Nephrology

Faculty of Medicine

Ain Shams University

Dr. Yasser Mahmoud Elshahawy

Lecturer of Internal Medicine& Nephrology

Faculty of Medicine

Ain Shams University

Dr. Dawlat Hussein Sany

Lecturer of Internal Medicine& Nephrology

Faculty of Medicine

Ain Shams University

Introduction

The number of chronic kidney disease (CKD) patients has been increasing throughout the world over the last decade and is expected to continue growing. A rise in the incidence of CKD in recent years paralleled with an increasing prevalence of metabolic syndrome (Yu et al, 2010).

Metabolic syndrome is a medical condition with a clustering of major risk factors for cardiovascular diseases and type 2 diabetes. It arises from a constellation of derangements that includes hypertension, atherogenic dyslipidemia, central obesity and insulin resistance (Park et al, 2010).

There are several different definitions of metabolic syndrome. Although all of them include glucose intolerance, obesity, hypertension, and dyslipidemia as essential components, they differ in details. According to the definitions of the World Health Organization (WHO) and the European Group for the Study of Insulin Resistance (EGIR), glucose intolerance or insulin resistance are considered as essential metabolic syndrome components, whereas this is not the case for the National Cholesterol Education Program Adults Treatment Panel III (NCEP-ATPIII) (Ucar et al., 2009).

Due to its simplicity and clinical relevance, the NCEP definition for metabolic syndrome is nowadays the one being most widely used in general populations (Li et al, 2009).

It requires three of the following five criteria:

- Abdominal obesity (waist circumference >102 cm in men and >88 cm in women);
- Fasting hypertriglyceridemia (≥ 1.7 mmol/L or 150 mg/dL);
- Low fasting HDL (<1.04 mmol or 40 mg/dL in men and<1.29 mmol/L or 50 mg/dL in women).

- High blood pressure (≥130/85 mmHg) or current treatment with antihypertensive medication; and
- High fasting glucose (≥6.1 mmol/L or 110 mg/dL) or current treatment with anti-diabetic medication.

Metabolic syndrome promotes the development of chronic kidney disease, and insulin resistance has been noticed as a result of impaired renal function; hence, patients with end-stage renal disease (ESRD) show a high prevalence of metabolic syndrome (Johnson et al, 2007, Young et al, 2007). However, the exact prevalence of the metabolic syndrome in dialysis patients is unknown (Elsaid et al, 2009).

End-stage kidney disease (ESKD) patients requiring dialysis have a substantially elevated risk of CVD morbidity and mortality. Evidence is accumulating to suggest that the metabolic syndrome predisposes to cardiovascular disease (CVD). Recent studies associate metabolic syndrome with hospitalization and severe coronary artery disease in HD patients. Reports also show a relationship between metabolic syndrome and inflammation in patients on HD (Chen et al, 2006, Yang et al, 2007)

In the general population, metabolic syndrome and its constituent components are known to increase risk for adverse effects, including cardiovascular disease and type 2 diabetes but data in the dialysis population are lacking (Grundy, 2008, Park et al, 2010). Evidence increasingly suggests, however, that some components of metabolic syndrome, including hypertension, hyperlipidemia and obesity, may favourably influence outcome in ESRD, an example of 'reverse epidemiology (Chen et al,2006, Park et al, 2010). In fact, hemodialysis patients with malnutrition had a lower rate of survival compared with those who had metabolic syndrome (Stolic et al,2010).

Aim of the work

The aim of the present study is to compare cardiac function in hemodialysis patients with metabolic syndrome and those without metabolic syndrome.

Patients and methods

This study will be conducted on 100 adult stable regular hemodialysis patients, who had been on regular dialysis for more than 3 months at Mobaric and Elagoza Police Hospitals, after obtaining their informed consent.

Exclusion criteria will include patients who were younger than 18 years of age, had overt infections during the last 3 months prior to study enrollment or had a history of malignancy or other chronic inflammatory disease (e.g. rheumatoid arthritis or systemic lupus), or unwillingness to participate in the study.

The patients will be divided into 2 groups based on the presence or absence of metabolic syndrome:

Group I: will include 50 HD patients fulfilling the criteria of metabolic syndrome according to the NCEP-ATP-III.

Group II: will include 50 HD patients without metabolic syndrome.

All study population will be submitted to:

- 1. Full history taking with recording of clinical, demographic, hemodialysis data, detailed drug history and associated co-morbid diseases.
- 2. Through clinical examination including vital signs, body weight, height, BMI(weight (kg) divided by the height squared (m2), waist circumference measurement.
- 3. Blood samples for laboratory measurements of fasting blood glucose and fasting serum total cholesterol, HDL cholesterol, triglycerides, serum albumin, and C-reactive protein (CRP)
- 4. M-mode and 2-dimensional Doppler Echocardiographic examinations will be done to all participants to evaluate LV measures and cardiac function .

5.Patients will be classified as having metabolic syndrome if they have three or more of the following criteria of NCEP-ATP-III: (1) SBP ≥130 mmHg and/or DBP ≥85 mmHg, (2) serum TG ≥150 mg/dl, (3) serum HDL cholesterol <40 mg/dl in men or <50 mg/dl in women, (4) fasting plasma glucose ≥110 mg/dl and (5) abdominal obesity according to waist circumference measured at the level of the umbilicus with the participant in the supine position defined as waist circumference >102 cm in men or >88 cm in women.