

PERIPHERAL BLOOD T-CELL CD4 AND CD8 LEVELS IN SEROPOSITIVE HCV RENAL TRANSPLANTED PATIENTS

Ehesis

Submitted for the Partial Fulfillment of Master Degree in

Internal Medicine

By

Mohamed Abd El Latif Mohamed

M.B.B.Ch.

Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Mohammed Ali Ibrahim

Head of Nephrology Department
Faculty of Medicine, Ain Shams University

Prof. Dr. Afaf Abd El alim Mostafa

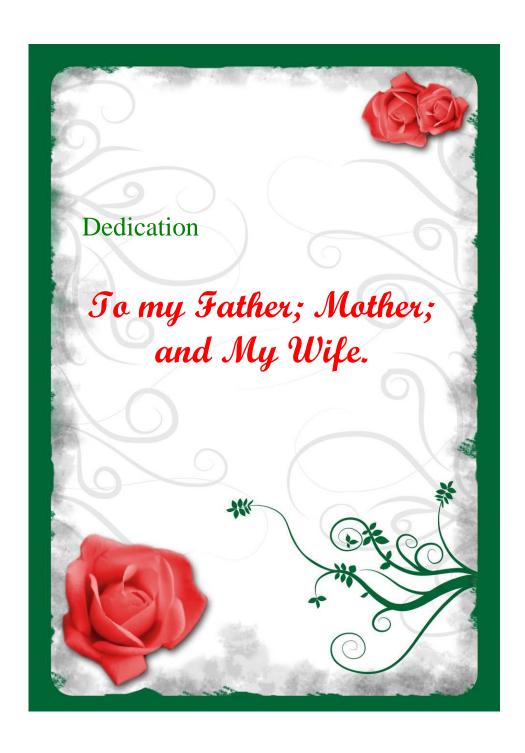
Professor of clinical pathology
Faculty of Medicine, Ain Shams University

Dr. Dawlat Hussien Sany

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2013

سورة البقرة الآية: ٣٢


First of all I have to express my all thanks to **Allah** the most merciful the most helpful allowing me perform this work.

I would like to express my deepest gratitude and sincere appreciation to **Prof. Or. Mohamed Ali Ibrahim**, Head of Nephrology Department, Faculty of Medicine, Ain Shams University for his continuous encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.

I am also grateful to, **Prof. Dr. Afaf Abd El Alim Mostafa**, Professor of clinical pathology, Faculty of
Medicine, Ain Shams University who freely gave her time,
effort and experience along with continuous guidance
through out this work.

Special thanks are extended to **Dr. Dawlat Hussien**Sany, Lecturer of Internal Medicine, Faculty of Medicine,
Ain Shams University for her constant encouragement and
advice whenever needed.

Finally, I would like to express my profound gratitude to **Dr. Ashraf Donia**, Head of Nephrology Department, National Institute of Urology and Nephrology his advice helped me in selection of cases and collection of data.

Contents

Subjects	
List of abbreviations	I
List of Tables	IV
List of Figures	V
• Introduction	1
Aim of the work	4
Review of literature	
- Chapter I: Hepatitis C Virus	5
- Chapter II: HCV And Renal Transplantation	19
- Chapter III: HCV And Immune System	51
Patients & Methods	76
• Results	82
Discussion	106
Summary & Conclusion	116
Recommendations	120
• References	121
Arabic summary	

List of Abbreviations

ACE Angiotensin converting enzyme

ACR Acute cellular rejection

ALG Antilymphoblast globulin

ALT Alanine amino transferase

APC Antigen-presenting cell

ARB Angiotensin receptor (AT2) blockers

AT2 Angiotensin receptor

ATG Antithymocyte globulins

AZA Azathioprine

CCL3 Chemokine (C-C motif) ligand 3

CHC Chronic hepatitis C
CNIs Calcineurin inhibitors

CI Confidence interval

CsA Cyclosporine

CTL Cytotoxic T Lymphocytes

CXCL8 Chemokine (C-X-C motif) ligand 8

CyA Cyclosporin A

DC Dendritic cells

DGF Delayed graft function

DM Diabetes mellitus

E Envelope

ESRD End stage renal disease **EIA** Enzyme immunoassay

ELISA Enzyme-linked immunosorbent assay

FAE Follicle-associated epithelium

FoxP3 Forkhead box p3

GM-CSF Granulocyte/macrophage colony-stimulating

faactor

🕏 List of Abbreviations Z

GN Glomerulonephritis

HCV Hepatitis C virus

IFN Intreferron

IFN-γ Interferon-gamma

IRF3 Interferon regulatory transcription factor

IL-2 Interleukin-2

IL2RA Interleukin 2 (IL2) receptor alpha

KDIGO Kidney Disease Improving Global Outcomes

MMF Mycophenolate mofetil

MN Membranous nephropathy

MIP1α Macrophage Inflammatory Protein- 1 alpha

MyD88 Myeloid differentiation primary response gene (88)

NS Non structural proteins

MGN Membranous GN

MHC Major histocompatibility complex

MPGN Membranoproliferative glomerulonephritis

mIg Membrane immunoglobulin

NGF Nerve growth factor

NKreg Natural killer regulatory cells

NKT Natural killer T

NODAT New onset diabetes after transplantation

PDCs plasmacytoid dendritic cells
PCR Polymerase chain reaction

PEG-IFN Pegylated interferon

PNALT persistently normal alanine aminotransferase levels

PTDM Post transplant diabetes mellitus

PTLD Post-transplant lymphoproliferative disorder

RA Rheumatoid arthritis

RER Rough endoplasmic reticulum

RBV Ribavirin

🕏 List of Abbreviations Z

RNA Ribonucleic acid

RR Relative risk

RTRs Renal transplant recipients
SDF-1 Stromal cell-derived factor
SRR Steroid-resistant rejection
SVR Sustained viral response

TAC Tacrolimus

TAP1 Transporter associated with antigen processing 1

TCR T cell receptorTc T cytotoxic cells

TGF β Transforming growth factor β

Th T helper cells

TBK1 TANK-binding kinase 1

TG Transgenic

TNF- α Tumer necrosis factor –alpha

Tr1 Type 1 regulatory T cells

Treg T regulatory cells

USRDS United States Renal Data System

List of Tables

Table No.	Title	Page
Table (1)	Summary of HCV related	11
	extrahepatic manifestations with	
	clinical manifestations, differential	
	diagnosis and treament options.	
Table (2)	Shows CD4 effector phenotypes	55
Table (3)	Comparison between the	83
	demographic characteristics in the	
	studied groups.	
Table (4)	Comparison between the studied	84
	groups regarding the	
	immunological parameters.	
Table (5)	Comparison between the studied	85
	groups regarding infection episodes	
	needed hospital admission,	
	infections treated in outpatient	
	clinic & rate of infections/ month.	
Table (6)	Comparison between the studied	86
	groups regarding blood chemistry.	
Table (7)	Comparison between the group A	87
	and group B regarding the	
	immunosuppression regimen.	
Table (8)	Comparison between group A and	88
	group B regarding the number of	
	acute rejection episodes.	

🕏 List of Tables 🗷

Table No.	Title	Page
Table (9)	Correlations between infections	89
	needed hospital admission,	
	infections treated in outpatient	
	clinic and rate of infections/month	
	with the immunological parameters	
	and blood chemistry in HCV-ve	
	recipients group.	
Table (10)	Correlations between infections	91
	needed hospital admission,	
	infections treated in outpatient	
	clinic and rate of infections with the	
	immunological parameters and	
	blood chemistry in HCV +ve	
	recipients group.	
Table (11)	Correlation between infections	93
	needed hospital admission,	
	infections treated in outpatient	
	clinic and rate of infections/month	
	with the immunological parameters	
	and blood chemistry in all	
T 11 (10)	recipients.	0.4
Table (12)	Comparison between the	94
	demographic characteristics in the	
Table (12)	studied groups.	06
Table (13)	Comparison between the studied	96
	groups regarding blood chemistry.	

Table No.	Title	Page
Table (14)	Comparison between group D and	97
	group E regarding infections needed	
	hospital admission, infections	
	treated in outpatient clinic & rate of	
	infections/month.	
Table (15)	Comparison between group D and	98
	group E regarding the number of	
	acute rejection episodes.	
Table (16)	Correlations between infections	99
	needed hospital admission,	
	infections treated in outpatient	
	clinic and rate of infection/month	
	with age and blood chemistry in	
	HCV-ve recipients.	
Table (17)	Correlations between infections	101
	needed hospital admission,	
	infections treated in outpatient	
	clinic and rate of infection/month	
	with age and blood chemistry in	
	HCV+ve recipients.	
Table (18)	Correlation between infections	103
	needed hospital admission,	
	infections treated in outpatient	
	clinic and rate of infection/month	
	with blood chemistry in all	
	recipients.	

List of Figures

Figure No	Title	Page
Figure (1)	Hepatitis C virus (HCV): model	6
	structure and genome organization.	
Figure (2)	Natural history of HCV Infecton.	8
Figure (3)	Algorithm for evaluation and	26
	management of chronic hepatitis c	
	infection in patients who under	
	consideration for kidney	
	transplantation.	
Figure (4)	Functions of TH1 and TH2 cells in	56
	immune response via the release of	
	cytokines.	
Figure (5)	The schema of innate immune	65
	suppression in chronic hepatitis c	
	virus and the representative	
	suppressive mechanisms.	
Figure (6)	The schema of adaptive immune	70
	suppression in chronic hepatitis c	
	and the representative suppressive	
	mechanisms.	
Figure (7)	Histogram represents the comparison	84
	between group A and group B	
	regarding gender.	
Figure (8)	Histogram represents the comparison	88
	between group A and group B	
	regarding the immunosuppression	
	regimen.	

Figure No	Title	Page
Figure (9)	Histogram represents the comparison	88
	between group A and group B	
	regarding the number of acute	
	rejection episodes.	
Figure (10)	Correlation between CD4 and	92
	infections. Treated in outpatient	
	clinic in HCV +ve recipients (Group	
	B).	
Figure (11)	Histogram represents the comparison	95
	between group D and group E	
	regarding gender.	
Figure (12)	Histogram represents the comparison	98
	between group D and group E	
	regarding the number of acute	
	rejection episodes.	
Figure (13)	Correlation between Age and	100
	infections treated in outpatient clinic	
	in HCV-ve recipients (Group A)	
Figure (14)	Correlation between urea and	102
	infections treated in outpatient clinic	
71 (4.5)	in HCV+ve recipients (Group D)	104
Figure (15)	Correlation between Age and infections treated in outpatient clinic	104
	in all renal allograft recipients	
	(Group D and Group E).	
Figure (16)	Correlation between urea and	105
	infections treated in outpatient clinic	
	all renal allograft recipients (Group	
	D and Group E).	

Introduction

Renal transplantation offers the potential for improved quality and length of life to patients with end-stage renal disease (*Shapiro R*, 2011).

Renal transplant recipients represent an important group with high prevalence of HCV infection rates ranging from 10% to 50% (*Justa S et al.*, 2010).

Infectious complications significantly increase morbidity and mortality after renal transplantation (*Sousa S et al.*, 2010).

Approximately 80% of all renal transplant recipients have an infectious complication in the first year following transplantation (*Sousa S et al.*, 2010).

In fact, in the past it was reported that patients with non-A non-B hepatitis had 'a marked increase of life threatening extrahepatic complications'. This finding has been demonstrated in HCV-positive patients who had more frequent postoperative infections and potentially fatal infections of the central nervous system, lungs and blood stream (such as cytomegalovirus infection, tuberculosis, sepsis) (Domi'nguez B and Morales JM, 2009).

Although prior studies have shown an overall increased risk of death from infection in HCV-infected kidney transplant recipients. This study showed that the increased death rate from infection occurs in the early (6 months) post-transplant period. This raises as yet unanswered questions about the contribution of HCV infection to this increased mortality and suggests that one approach may be to modify the immunosuppression administered during this period (*Roth D et al.*, 2011).

The presence of HCV infection in liver transplant recipients resulted in a significant increase in Regulatory T cells and a decrease in activated T cells in comparison with HCV-negative liver transplant recipients. These 2 findings indicate a potentially important effect of HCV on the immune system after transplantation through an increase in the suppressive role of Regulatory T cells and/or a decrease in activated T cells (Ciuffreda D et al., 2010).

CD4 T cell population was significantly increased in both HCV-negative and HCV-infected transplant recipients (17.6±1.4% and 0.5±0.9%, respectively) in comparison with healthy subjects and non transplanted HCV-infected patients. Interestingly, this activated CD4 T cell population was significantly lower in HCV-infected recipients versus HCV-negative recipients (*Ciuffreda D et al.*, 2010).