Evaluation of brain natriuretic peptide (BNP) as a marker of cirrhotic cardiomyopathy in hepatocellular carcinoma patients before and after Radiofrequency ablation

Thesis

Submitted for partial fulfillment of master degree in Internal
Medicine

 $\mathbf{B}\mathbf{y}$

Mohammad Saeed Ibraheem Toaima

M.B, B.ch

Under supervision of **Prof. Dr. Sayed Mohammad Shalaby**

Professor of Internal Medicine
Faculty of Medicine, Ain Shams University

Dr. Noha Abdelrazek Alnakeeb

Assistant Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Dr. Maged Sami Abdelshahid

Lecturer of Internal Medicine
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2013

سورة طه من الآية ﴿٥٦﴾ حتى الآية ﴿٢٨﴾

To My Parents...

Professor Dr. Saeed Toaima Mrs. Ebtehal El Arousy

And My Sisters..

Ms. Doaa Saeed Toaima

Ms. Aliaa Saeed Toaima

Thank you for your unconditional support with my studies. I am honored to have you as my family.

Thank you for giving me a chance to prove and improve myself through all my walks of life.

Thanks for believing in me and for allowing me to further my studies.

Special Thanks to my dear friends

Dr. MOHAMED HAMED AMMAR

&

Dr. IBRAHIM SALEM AL BASIOUNY for their kindly support \mathcal{E}_t help.

I love you all. and will always do.

Acknowledgment

First of All Thanks To \boldsymbol{ALLAH}

I would like to express my profound gratitude to **Professor Doctor/ SAYED MOHAMMAD SHALABY,** Professor of Internal Medicine,
Faculty of Medicine, Ain Shams University, for his most valuable advice and support throughout the whole work and for dedicating much of his precious time to accomplish this work.

I am also grateful to **Ass. Professor Doctor/ NOHA ABDELRAZEK ALNAKEEB** Assistant professor of Internal Medicine, Faculty of Medicine, Ain Shams University, for her continuous encouragement, supervision and kind care.

My thanks and deep obligation to **Doctor/ MAGED SAMI ABDELSHAHID,** Lecturer of Internal Medicine, Faculty of Medicine, Ain Shams University, for his suggestions has been of great help.

My thanks and deep obligation to **Ass Professor Doctor/ MOHAMED ELGHARIB & Ass Professor Doctor/ WALEED HETTA,** Assistant Professors of Interventional radiology, Faculty of Medicine, Ain Shams University, for their facilitation for doing interventional procedures.

My thanks to **Ass Professor Doctor/ SARAH ABO AGWA,**Assistant Professors of clinical pathology, Faculty of Medicine, Ain Shams University, for performing laboratory tests.

List of Content:

• Chapter I :	Introduction	11
• Chapter II :	Aim of the work	17
• Chapter III :	Review	19
	Cirrhotic Cardiomyopathy	20
	Natriuretic Peptides	30
	Hepatocellular Carcinoma	40
	Radiofrequency Ablation	54
• Chapter IV:	Patients and methods	75
• Chapter V :	Results	85
• Chapter VI:	Discussion	103
• Chapter VII:	Summary and conclusion	109
• Chapter VIII:	Recommendations	112
• Chapter IX:	References	114
• Chapter X :	Arabic Summary	134

List of abbreviations:

AA	Amino Acid
ACS	Acute coronary Syndrome
ALB	Albumin
ALT	Alanine Aminotransferase
AST	Aspartate Aminotransferase
BCLC	Barcelona Clinic Liver Cancer
BNP	Brain Natriuretic Peptide
BUN	Blood Urea Nitrogen
CBC	Complete Blood Count
CCM	Cirrhotic Cardiomyopathy
CECT	Contrast Enhanced Computerized Tomography
CEUS	Contrast Enhanced Ultra Sonography
CHF	Congestive Heart Failure
CO	Carbon Monoxide
COP	Cardiac Output
COPD	Chronic Obstructive Pulmonary Diseases
CT Scan	Computerized Tomography Scan
DT	The Deceleration Time
E/A ratio	Early / Late Ratio
ECG	Electro Cardio Gram
ED	Emergency Department
EF%	Ejection Fraction
ELISA	Enzyme Linked Immuno Sorbent Assay
FDG	Floride Radiolabled Deoxyglucose
GGT	Gamma Glutamyle Transferase
HBV	Hepatitis B Virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C Virus
HDL	High Denisty Lipoprotein
INR	International Normalization Ratio
LDL	Low Density Lipoprotein
MDCT	Multidetector Computerized Tomography
MRI	Magnetic Resonance Imaging

N	Number
Na	Sodium
NICE	National Institute for Clinical Excellence
NO	Nitric Oxide
NS	Non Significant
PEI	Percutaneous Ethanol Injection
PET	Positron Emission Tomography
PG	Pico Gram
PMCT	Percutaneous Microwave Coagulation Therapy
PT	Prothrombin Time
PTT	Partial Thromboplastin Time
RF	Respiratory Failure
RFA	Radiofrequency Ablation
S	Significant
S. TG	Serum Triglycerides
SD	Standard Deviation
SNS	Sympathetic Nervous System
TACE	Trans Arterial Chemo Embolization
TIPS	Transjugular Intrahepatic Portosystemic Shunt

List of Figures:

Figure 1 Clinical Basis of Blunted Cardiac Response	23
Figure 2 Formation of B type NP	30
Figure 3: Regional Variation in the Estimated Age-Standardized Incidence Rates of Liver Cancer.	40
Figure 4: Diagnostic algorithm for suspected HCC. CT, computed tomography; MDCT, multidetector CT; MRI, magnetic resonance imaging; US, ultrasound.	
Figure 5: The BCLC staging system for HCC. M, metastasis classification; N, node classification; PS, performance status; RFA, radiofrequency ablation; TACE, transarterial chemoembolization.	47
Figure 6: MRI Studies Showing the Effects of Hepatocellular Carcinoma at Different Stages of the Disease	49
Figure 7: Electrode for radiofrequency ablation	59
Figure 8: Umbrella type electrodes for radiofrequency ablation.	59
Figure 9: T appearance of a liver lesion before radiofrequency ablation.	69
Figure 10: CT appearance of a liver lesion after radiofrequency ablation.	
Figure 11: Ultrasound image of liver after radiofrequency ablation.	72
Figure 12: comparison between both groups as regards serum BNP level before radiofrequency ablation.	90
Figure 13: correlation between BNP level and EF % before radiofrequency ablation in patient group.	94
Figure 14: correlation between BNP level, E/A ratio and Decleration time before radiofrequency ablation in patient group.	96
Figure 15: comparison between the EF% before and after radiofrequency ablation in patient group.	100
Figure 16: correlation between BNP level and EF % after radiofrequency ablation in patient group.	101

List of Tables:

Table 1: Distinctive features of BNP and NT-proBNP	33	
Table 2: Clinical usefulness of BNP and NT-proBNP testing in patients with CHF		
Table 3: Usual ranges for brain natriuretic peptide (BNP)	36	
Table 4: Comparison between both groups as regards gender.	87	
Table 5: comparison between both groups as regards age.		
Table 6: comparison between both groups as regards laboratory data.		
Table 7: comparison between both groups as regards serum BNP level before radiofrequency ablation.		
Table 8: comparison both groups as regards the EF% before radiofrequency ablation.		
Table 9: Correlation between BNP level before radiofrequency ablation and laboratory data in patient group.		
Table 10: correlation between EF% - Before radiofrequency ablation and laboratory data in patient group.		
Table 11: correlation between BNP level and EF % before radiofrequency ablation in patient group.		
Table 12: correlation between BNP level, E/A ratio and	95	

Decleration time before radiofrequency ablation in patient		
group.		
Table 13: comparison between the levels of serum BNP before		
and after radiofrequency ablation in patient group.		
Table 14: comparison between the Decleration time before and		
after radiofrequency ablation in patient group.		
Table 15: comparison between the E/A ratio before and after		
radiofrequency ablation in patient group.		
Table 16: comparison between the EF% before and after		
radiofrequency ablation in patient group.		
Table 17: correlation between BNP level and EF % after		
radiofrequency ablation in patient group.		
Table 18: correlation between BNP level,E/A ratio and		
Decleration time after radiofrequency ablation in patient group.		

Introduction

Chapter I Introduction

Introduction

Hepatocellular carcinoma is one of the ten most common cancers worldwide . the tumor is either single or occurs as multiple nodules throughout the liver. (**Kumar P**, et al, 2005).liver cancer is the fifth most common cancer in men and the seventh in women. (Golobocan, 2008)

Radiofrequency ablation has received great interest as a minimally invasive alternative therapeutic technique for hepatocellular carcinoma (HCC) for the past decade and has now gained a major role in the treatment of HCC with promising clinical outcome data. (Rhim H et al,2003)

Cirrhotic cardiomyopathy: This syndrome is formally described as cirrhotic cardiomyopathy, which is defined as chronic cardiac dysfunction in patients with cirrhosis characterized by blunted contractile responsiveness to stress and/or altered diastolic relaxation with electrophysiological abnormalities, in the absence of known cardiac disease and irrespective of the causes of cirrhosis, although some etiologies (e.g., iron overload and alcohol consumption) further impact on myocardial structure and function. (Wong, 2009).

Brain natriuretic peptide (BNP)is a biological active peptide of 32 amino acids and has vaso dilator and natriuretic properties. BNP is cleaved from 108 amino acids proBrain Natruretic peptides released from cardiac ventricls in response to stretching champers . Release of

Chapter I Introduction

BNP appears to be indirect proportion to ventricular volume expansion and pressure overload. BNP decrease after effective treatment of heart failure . it is used in routin assessment for differentiating acute heart failure from other causes of dyspnea such as RF . (Hobbs FD, et al, 2002).

BNP levels increase markedly in left ventricular dysfunction and the level in heart failure correlated with symptoms severity . it is important in diagnosing heart Failure in patient with unexplained dyspnea and screening for asymptomatic ventricular dysfunction establishing prognosis or guiding titration of drug thereby and detection of future cardiovascular events .(Jankowski M,2008)

Level of ≥ 100 pg/ml have a greater than 95% specificity and greater than 98% sensitivity in patient with CHF. (**Hobbs FD**, et al; 2002)

Causes of increase of BNP cauld be cardiac such as heart failure, diastolic dysfunction, acute coronary syndrome, hypertension with left ventricular hypertrophy, valvular heart disease, atrial fibrillation, myocarditis and cardiac allograft rejection or non cardiac such as acute pulmonary embolism, pulmonary hypertension, sepsis, chronic obstructive pulmonary disease(COPD) with cor pulmonal or respiratory failure, hyperthyroidism and renal failure. (Felker GM et al ,2006)

Chapter I Introduction

Aim of the work:

This study aims to evaluate the brain natriuretic peptide as a marker for the diagnosis of cirrhotic cardiomyopathy in hepatocellular carcinoma patients before and after radiofrequency ablation.

Patients and methods:

The study will be conducted on <u>30 patients</u> admitted in internal medicine department and interventional radiology department of Ain shams university hospitals. They will be divided into:

- **20** patients with hepatocellular carcinoma undergoing radiofrequency ablation as patient group.
 - <u>10 patients</u> with chronic liver disease (child A) as control group.

All patients will be subjected to the following:

I-full history taking and clinical examination

II-Laboratory investigations including:

1- liver function tests

- S.albumin (Alb)
- S.alanine transaminase (ALT)
- S.aspartate transaminase (AST)
- S.alkaline phosphatase (ALP)