Phenotypic-detection of Plasmid-mediated AmpC β -Lactamase-producing Strains of Proteus Mirabilis

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By Shaimaa Abou Bakr Gaber

M.B., B. Ch. Ain Shams University

Under Supervision of **Professor/ Omnia Abu El- Makarem Shaker**

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Doctor/ Rania Ali Ammar

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2013

Contents

Title Pa	ge No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the work	5
Review of Literature	6
☐ Proteus Species	6
 Historical Aspect Taxonomic Classification Natural Habitat Pathogenicity and Virulence Factors Typing Methods Incidence Route of Transmission Spectrum of Disease Mechanism of Action of β-Lactam Antibiotics Resistance to β-Lactam Antibiotics 	6810121214
 Resistance to p-Lactam Antibiotics Causes of Spread of Antibiotic Resistance Mechanism of Resistance 	18
□ AmpC β-Lactamases	
 Introduction Historical Background Epidemiology Regulation Definition of Resistance Types 	55 57 58

Contents (Cont...)

Title	Page No.	
☐ Laboratory Diagnosis of AmpC β-Lactamases61		
Phenotypic DetectionGenotypic Detection		
☐ Treatment of AmpC Producing Organisms	77	
☐ Prevention and Control	83	
Materials and Methods	87	
Results	105	
Discussion	114	
Summary	121	
Conclusion and Recommendations	124	
References	125	
Arabic Summary		

List of Abbreviations

ABC : ATP-binding cassette

ACC : Ambler class C

AcrAB : Acriflavine resistance protein A and B

ACT : AmpC type Ala : Alanins residue

ALG : Alginate

AmpC : Ambler class C enzymes

AP-PCR : Arbitrarily primed polymerase chain reaction

BAs : Boronic acids

BIL-1 : Bilal

CA : Clavulanic acid

CAM : Cefoxitin agar medium

CAUTI : Catheter associated urinary tract infection

CAZ : Ceftazidime

CIAT : Ceftazidime-imipenem antagonism test CLSI : Clinical and laboratory standards institute

CM : Cytoplasmic membrane

CMY : Cephalosporins mediated by β-lactamas

CMY : Cephamycins
CTT : Cefotetan
CTX : Cefotaximase

DDST : Double-disk synergy test

DHA : Dhahran

E.coli : Escherichia coli

ECA : Enterobacterial common antigen
EDTA : Ethylene-diamine-tetra-acetic acid

ESAC : Extended-spectrum AmpC

ESBL : Extended-spectrum β -lactamase

E-test : Epsilometer test

FOX : Cefoxitin

IEF : Isoelectric focusing
IgA : Immunoglobulin A
IM : Inner membrane

IMP : Inner membrane protein

IMPs : Imipenem hydrolyzing enzymes

IPM : Imipenem

K.pneumoniae: Klebsiella pneumoniae

KPC : Klebsiella pneumonia carbapenemase

List of Abbreviations (Cont...)

LAT : Latamoxef

LPS : Lipopolysaccharide

MATE : Multidrug and toxic compound extrusion

MBLs: Metallo β-lactamasesMBLs: Metallo β-lactamases

MDDM : Modified double disk approximation method

MDR : Multi drug resistant

MFP : Membrane fusion proteinMFS : Major facilitator superfamilyMIC : Minimal inhibitory concentration

MIR-1 : Miriam MOX : Moxalactam

MRSA : Methicillin resistant Staphylococcus aureus

NAG : N-acetylglucosamine NAM : N-acetylmuramic acid

NCCLS : National committee for clinical laboratory standards

NMC-A : Non-metallo carbapenamase of class A

OM : Outer membrane

OMP : Outer membrane proteinOMPF : Outer membrane protein F

OXA : Oxacillinase P.mirabilis : Proteus mirabilis

PABLs : Plasmid mediated AmpC β-lactamases

PBPs : Penicillin binding proteins

PC1 : Penicillinases

PCR : Polymerase chain reaction
PFGE : Pulsed field gel electrophoresis

PG : Peptidoglycan
PL : Phospholipid

RA : Rheumatoid arthritis

RND : Resistance nodulation cell division

SHV : Sulfhydryl variable

SMR : Small multidrug resistance

Spp. : Species

TDET : Three dimentional extract test

TE : Tris EDTA TEM : Temoneira

UTI : Urinary tract infections

VIM : Verona integron encoded metallo-β-lactamase

List of Tables

Table No.	Title	Page No.
Table (1):	Classification schemes for β-lactamases	s32
Table (2):	Old and new β -lactamase inhibitors specific activity against different class β -lactamases	ses of
Table (3):	Genetics of β-Lactamases	39
Table (4):	Comparison of β-lactamase classific systems	
Table (5):	Components of reaction master mix for 25 ul reaction	
Table (6):	Three-step cycling protocol	102
Table (7):	Correlation between Cephamycin-Hodg and PCR as a reference method	
Table (8):	Correlation between Tris-EDTA disk and PCR as a reference method	
Table (9):	Correlation between Combination-disk with boronic acid and PCR as a refe method	rence
Table (10):	Correlation between Cephamycin-Hodg Tris-EDTA disk test	
Table (11):	Correlation between Cephamycin-Hodg and Combination-disk test with boronic	•
Table (12):	Correlation between Tris-EDTA disk and Combination-disk test with boronic	
Table (13):	Raw data of samples	113

List of Figures

Figure No.	Title	Page No.
Figure (1):	Bull's eye appearance of P.mirabilis color	nies9
Figure (2):	Dienes typing of proteus strains showing different strains	
Figure (3):	Chemical structures of β -lactams (1-4), saction of β -lactamases (5), and che structures of β -lactamase inhibitors us clinical practice (6-8)	emical ed in
Figure (4):	Illustration of the outer membrane, cell and plasma membrane of a Gram-position Gram-negative bacterium	ive &
Figure (5):	Sites of action and potential mechanism bacterial resistance to antimicrobial agent	
Figure (6):	Efflux systems reverse the diffusion antibiotics across the OM	
Figure (7):	Outer wall of Gram-positive and Onegative species and detail of porin characteria	annels
Figure (8):	β-Lactamase found in bacteria and classification and synthesis, which chromosomally or plasmid mediated	hether
Figure (9):	(A) Conjugative transfer of plasmid betwee (B) Transfer of a mobilizable plasmid betwee cells assessed by a conjugative plasmid	oetween
Figure (10):	(A) Integration of a transposon into a DNA (transposition); IS, insertion sequ (B) Excision, circulation and subseconjugative transfer by a conjugative transposon into a recipient cell. Acquisition of an array of genes be integron via site specific recombination	equent gative (C) by an

List of Figures (Cont...)

Figure No.	Title Page No).
Figure (11):	CAM assay. AmpC-positive extracts produce a zone of growth around well	55
Figure (12):	AmpC disk test with six isolates being tested on a 90-mm plate, with one isolate inoculated onto disks placed on either side of three cefoxitin (FOX) disks	56
Figure (13):	Cefoxitin— BA method for the detection of AmpC production	58
Figure (14):	Methods designed for detection of AmpC enzymes	'2
Figure (15):	Modified three dimensional test7	13
Figure (16):	Detection of AmpC β-lactamases using CIAT7	' 4
Figure (17):	Specimen results with the Cica β-Test Strip (a) HMRZ-86 with no inhibitor; (b) MBL test; (c) CA test for ESBLs; (d) test for AmpC enzymes	75
Figure (18):	Negative and positive indole test	88
Figure (19):	Isolate showing +ve Cephamycin Hodge test9)4
Figure (20):	Isolate showing -ve Cephamycin Hodge test9)4
Figure (21):	Isolate showing+ve Tris –EDTA disk test (TE disk: Tris-EDTA disk, FOX: Cefoxitin 30µg)9	96
Figure (22):	Isolate showing-ve Tris –EDTA disk test9	16
Figure (23):	Isolate showing +ve combination- disk test with boronic acid. (BA: Boronic acid 400 µg, FOX: Cefoxitin 30µg)9	98
Figure (24):	Isolate showing -ve combination- disk test with boronic acid9	98

List of Figures (Cont...)

Figure No.	Title	Page No.
Figure (25):	Results of syber Green real-time PC amplification plot with cycles number axis and florescence on y axis	on x
Figure (26):	Results of melting curve, average 77.13°C -77.72°C	
Figure (27):	Evaluation of Cephamycin-Hodge Test V	's PCR106
Figure (28):	Evaluation of Tris-EDTA Disk Test Vs P	CR107
Figure (29):	Evaluation of Combination Disk Test with Vs PCR	
Figure (30):	Correlation between Cephamycin-Hodg and Tris-EDTA disk test	
Figure (31):	Correlation between Cephamycin-Hodg and Combination-disk test with boronic a	
Figure (32):	Correlation between Tris-EDTA disk test Combination-disk test with boronic acid.	
Figure (33):	Comparison between all studied methoregards evaluation criterias	

- First and foremost, I feel always indebted to Allah, the Most Merciful, Who gives me power to accomplish this work.
- I would like to express my deepest appreciation and sincere gratitude Professor/ Omnia Abu El- Makarem Shaker,

 Professor of Clinical and Chemical Pathology, Faculty of Medicine − Ain Shams University for her sincere help, constant encouragement, constructive criticism, and valuable guidance, I was truly honoured to work under her supervision.
- ♣ I feel deeply indebted to **Doctor/ Rania Ali Ammar,**Assistant Professor of Clinical and Chemical Pathology, Faculty
 of Medicine Ain Shams University for her active cooperation,
 deep concern, enthusiastic encouragement, the effort and time
 she has devoted to the fulfilment of this work.

Shaimaa Abou Bakr Gaber

INTRODUCTION

Proteus mirabilis which belongs to Enterobacteriaceae family, is part of the normal flora of the human gastrointestinal tract. It is the second most common cause of urinary tract infections and one of the important causes of nosocomial infections (Song et al., 2011). It produces infections in humans only when the bacteria leave the intestinal tract. They produce bacteremia, pneumonia, and focal lesions in debilitated patients or those receiving intravenous infusions (Jawetz et al., 2007).

β-Lactamase-mediated resistance to penicillins and cephalosporins is a significant problem among gram-negative bacteria worldwide. β-Lactamases can be divided into four major classes (A, B, C, and D) based on substrate profiles and amino acid sequence (*Tenover et al.*, 2009).

AmpC β -lactamases have gained importance since the late 1970s as one of the mediators of antimicrobial resistance in gram negative bacilli. These enzymes are cephalosporinases capable of hydrolyzing all β -lactams to some extent. AmpC β -lactamases are two types, plasmid-mediated and chromosomal or inducible AmpC. Chromosomal AmpC enzymes are seen in organisms such as *Citrobacter freundii*, *Enterobacter cloaca*, *Morganella morganii*, *Hafnia alvei* and *Serratia marcescens* and are typically inducible by β -lactam antibiotics such as cefoxitin and imipenem but poorly induced by the third or fourth generation cephalosporins (*Akujobi et al.*, 2012).

The absence of new, effective anti-gram-negative antibiotics makes infection control the most important countermeasure against multidrug-resistant gram-negative pathogens. Infection control can prevent additional infections and the spread of resistant pathogens and thereby reduce the need to use antibiotics. Infection control is most effective when directed by rapid, accurate laboratory results (*Thomson*, 2010).

In recent years, the prevalence of infections with multidrug resistant *Enterobacteriaceae* has steadily increased. *Enterobacteriaceae* producing AmpC β -lactamases (AmpCs) have become a major therapeutic challenge (*Polsfuss et al.*, 2011).

P.mirabilis is often inhibited by penicillins. Oxyiminocephalosporins have been used as the drugs of choice to treat infections caused by ampicillin-resistant *P.mirabilis*. However, as with other *Enterobacteriaceae*, *P. mirabilis* strains exhibiting resistance to expanded-spectrum β -lactam agents have been widely reported in many parts of the world (*Song et al.*, *2011*).

The detection of AmpC-producing *P. mirabilis* is of significant clinical relevance since AmpC producers may appear susceptible to expanded-spectrum cephalosporins when initially tested. This may lead to inappropriate antimicrobial regimens and therapeutic failure. Thus, a simple and reliable detection procedure for AmpC producers is needed (*Polsfuss et al.*, 2011).

It may be difficult to detect plasmid-mediated AmpC β -lactamases (PABLs), which are known to interfere with the therapeutic and infection control processes (*Lee et al.*, 2009).

Many methods for the detection of ESBLs and PABLs have been proposed, but some procedures are difficult to perform in practice, time-consuming, and hard to interpret (*Jeong et al.*, 2009).

Phenotypic detection methods can be divided into the following two categories: ones that detect AmpC activities in enzyme extracts and the others that evaluate the inhibitory effects induced by AmpC inhibitors. Three dimensional extraction test has been reported as a reliable enzyme-extraction method, but this method is complicated and not applicable to clinical microbiology laboratories. Cephamycin-Hodge test and Tris-EDTA (TE)-disk test are reported as simple and sensitive phenotypic detection methods (*Lee et al.*, 2009).

Boronic acid (BA) derivatives are reported as reversible inhibitors of AmpC enzymes. Many studies have validated the use of BA to detect AmpC β -lactamases among gram-negative bacteria (*Shoorashetty et al.*, 2011).

Because phenotypic tests do not differentiate between chromosomal and plasmid -mediated AmpC β -lactamases, plasmid-mediated AmpC β -lactamases are most accurately detected with multiplex AmpC PCR. If molecular testing is not available, screen-positive isolates should be tested with a

Introduction

phenotypic confirmatory test that will distinguish AmpC production from other resistance mechanisms. Phenotypic confirmatory tests based on the detection of cephamycin hydrolysis or AmpC inhibition will distinguish AmpC β -lactamases from ESBLs and porin mutation. Confirmatory tests that detect cephamycin hydrolysis include the AmpC disk test, modified Hodge test, and the three-dimensional test. These are performed separately from the routine susceptibility test *(Thomson, 2010)*.