A COMPARATIVE STUDY BETWEEN THE EFFECTS AND SIDE EFFECTS OF 400 AND 600 MICROGRAMS OF MISOPROSTOL GIVEN RECTALLY FOR THE PREVENTION OF POSTPARTUM HEMORRHAGE

Thesis submitted for Partial fulfillment of The Master Degree In Obstetrics and Gynecology

Submitted by:

Sara Hassan Farahat Rizk Khalifa

M.B.B.Ch. 2006 (Cairo University)

Supervised by:

Prof. OSAMA SALEH EL-KADY

Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Dr. HAITHAM ABDEL MOHSIN SABAA

Lecturer of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2013

Acknowledgement

First of all , I would like to express my great thanks to ALLAH , to whom I relate any success in achieving any work in my life .

I would like to express my great thanks and deep gratitude to **Prof. Dr. OSAMA SALEH EL-KADY**Professor of Obstetrics and Gynecology, Faculty of Medicine- Ain Shams University for his kind supervision continuous guidance, indispensable advice, sincere encouragement and support all through my work.

I would like to express my great thanks and deep gratitude to **Dr. HAITHAM ABDEL MOHSIN SABAA** Lecturer of Obstetrics and Gynecology
Faculty of Medicine - Ain Shams University for his kind help, valuable advice, sincere encouragement and support all through my work.

List of abbreviations

aPTT	Activated Partial Thrombin Time
AUC	Area Under Serum Concentration
BUN	Blood Urea Nitrogen
C.S	Cesarean Section
cAMP	Cyclic Adenosine MonoPhosphate
CBC	Complete Blood Count
Cmax	Peak concentration
COX	Cyclooxygenase
CT	Computed Tomography
DIC	Disseminated Intravascular Coagulopathy
ELISA	Enzyme- Linked ImmunoSorbent Assay
FIGO	International Federation of Gynecology and Obstetrics
Gr-1	Group 1
Gr-2	Group 2
INR	International Normalized Ratio
ITP	Idiopathic Thrombocytopenic Purpura
IU	International Unit
IUD	Intrauterine Device
LFT's	Liver Function Tests
LRS	Lactated Ringer's Saline
M:W	Molecular Weight
MLCK	Myosine Light Chain Kinase
MPA	Misoprostol Acid
MPS	Making Pregnancy Safer
MRI	Magnetic Resonance Imaging
NS	Normal Saline
NSAIDs	Non Steroidal AntiInflammatory Drugs
NVD	Normal Vaginal Delivery
PG	Prostaglandins
PKA	Protein Kinase A
PPH	Postpartum Hemorrhage
PT	Prothrombin Time
RBC's	Red Blood Cells
SGPT	Serum Glutamic Pyrovic Transaminase
Tmax	Peak time concentration
VBAC	Vaginal Birth After Cesarean section
WHO	World Health Organization

List of Tables

Table 1	Causes of PPH	26
Table 2	Effects of fasting, antacids and high fat meals on	96
	pharmacokinetics of misoprostol	
Table 3	Descriptive statistics of group A and B regarding age	135
	and pregnancy duration	
Table 4	Descriptive statistics of group A and B regarding	136
	Pulse and Blood Pressure before and after misoprostol	
Table 5	Crosstab of mode of delivery	137
Table 6	Crosstab of presentation	137
Table 7	Crosstab of parity	138
Table 8	Crosstab of occurrence of PPH	139
Table 9	Crosstab of amount of blood loss	142
Table 10	Crosstab of occurrence of fever	143
Table 11	Crosstab of occurrence of shivering	145
Table 12	Summary of study results	151

List of figures

Figure (1)	Johnson method for uterine reduction	34
Figure (2)	The uterine massage	54
Figure (3)	Brandt-Andrews maneuver	55
Figure (4)	Bimanual Massage	62
Figure (5)	Vessel ligation	70
Figure (6)	The B-Lynch suture	72
Figure (7)	Care pathway of PPH	73
Figure (8)	Types of prostaglandins	79
Figure (9)	Different types of prostaglandins and their	80
	applications	
Figure (10)	Structure of PGE2	81
Figure (11)	Structure of PGE and PGF	82
Figure (12)	Schematic representation of COX pathway	84
	illustrating synthesis of major PGs	
Figure (13)	Biosynthesis of PGE1 and PGF1 from linoleic acid	85
Figure (14)	Countries where misoprostol is approved	88
Figure (15)	Chemistry of misoprostol	89
Figure (16)	Pharmacokinetics of different routes of	102
	administration of misoprostol	
Figure (17)	The mechanism of misoprostol in impairing female	108
	reproductive system immunity	
Figure (18)	Proposed mechanism of misoprostol teratogenicity	111
Figure (19)	Left facial palsy in one month baby	113
Figure (20)	The recommended dosage of misoprostol in	117
	obstetric uses	
Figure (21)	Pads used in the study	124
Figure (22)	Soaked pad absorbing 100cc blood	125
Figure (23)	Pad soaked with 100 cc blood	126
Figure (24)	The % occurrence of postpartum hemorrhage	140
Figure (25)	The amount of blood loss	142
Figure (26)	Side effect (fever)	144
Figure (27)	Side effect (shivering)	145

Table of contents

	ii
Acknowledgement	
List of abbreviations	
List of tables	
List of figures	
Protocol	
 Introduction 	2
o Aim of work	6
 Patients and methods 	7
o References	11
Review of literature	14
(1) Post-partum hemorrhage	14
 Introduction 	15
 Definition 	17
o Incidence	19
o Types	21
 Pathophysiology 	23
o Risk factors	24
o Causes	25
■ Tone (Uterine atony)	27
■ Trauma	29
 Tissue (Retained placenta) 	35
 Thrombin (Coagulation defect) 	38
 Complications 	40
o Diagnosis	43
o Workup	45
Laboratory studies	46
 Imaging studies 	48
o Differential Diagnosis	49
o Prevention	51
Uterotonic drugs	53
 Uterine massage 	54
■ Brandt-Andrews maneuver	55
o Treatment	56
Management of retained tissue	59
Management of genital tract trauma	59

 Management of thrombosis 	60
 Management of uterine atony 	62
Pharmacological management	63
· Surgical management	67
o Prognosis	74
o Follow up	74
 Recurrence 	74
(2) Misoprostol	75
 History of Prostaglandins 	77
 Types of prostaglandins 	77
o Structure	80
o Biosynthesis	82
 Functions of Prostaglandins 	85
☑ Misoprostol	87
History of misoprostol	87
 Structure and Chemistry 	88
 Mechanism of action 	90
 Pharmacodynamics 	91
 Pharmacokinetics 	92
 Oral route 	95
 Vaginal route 	97
 Sublingual route 	98
 Buccal route 	99
 Rectal route 	100
 Overdose 	102
o Effects	104
 On gastric acid secretion 	104
 On uterus and cervix 	104
 Other effects 	106
 Side effects 	107
 Gastrointestinal 	109
 Gynecological 	110
 Teratogenic effect 	110
 Contraindications 	114
o Precautions	114
 Drug interactions 	115
Obstetrics and Gynecological uses	115
 Obstetrics 	116
 Gynecological 	118

 Non- gynecological uses of misoprostol 	120	
patients and methods		
 Patients and methods 	122	
 Study drug 	131	
 Study design 	132	
• Results	134	
 Descriptive statistics 	134	
 Occurrence of postpartum hemorrhage 	139	
 The amount of blood loss 	140	
 Side effects 	143	
Fever	143	
Shivering	144	
• Discussion		
• summary		
Conclusion and recommendations		
o Conclusion	156	
 Recommendations 	157	
References		
الملخص العربي •	1	

A COMPARATIVE STUDY BETWEEN THE EFFECTS AND SIDE EFFECTS OF 400 AND 600 MICROGRAMS OF MISOPROSTOL GIVEN RECTALLY FOR THE PREVENTION OF POSTPARTUM HEMORRHAGE

Protocol of a thesis submitted for
Partial fulfillment of
The Master Degree
In
Obstetrics and Gynecology

Submitted by:

Sara Hassan Farahat Rizk Khalifa

M.B.B.Ch. 2006 (Cairo University)

Supervised by:

Prof. OSAMA SALEH EL-KADY

Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Dr. HAITHAM ABDEL MOHSIN SABAA

Lecturer of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2010

INTRODUCTION

Maternal death is a major challenge that usually occurs as a result of pregnancy and child birth, it occurs in about one in six in the poor parts of the world, compared with one in 30,000 in north Europe. This poses a huge challenge to reduce maternal mortality by 75% between 1995 and 2015. Maternal deaths are clustered around labor, delivery and immediate postpartum period, with postpartum hemorrhage being the main medical cause of death, (*Ronsmans, Graham*, 2006).

Considered as the main cause of death, postpartum hemorrhage is defined as the loss of 500 mL of blood or more within the first 24 hours after delivery. It accounts for at least 150,000 maternal deaths and 20 million morbidities every year, 28% of these deaths are in developing countries. So, there is a need for oxytocics that are stable, inexpensive and safe to be used with simple route of administration when parenteral uterotonics are not available, such as misoprostol, (*Joyce Primo Carpenter*, 2001).

Misoprostol is a prostaglandin E1 analogue that is not only has a strong uterotonic activity, but unlike other prostaglandins, it is inexpensive and is stable at room temperature. These two properties have attracted great

interest in the drug as an affordable method for preventing and treating postpartum hemorrhage in both low and middle income countries (WHO statement 2009), and it also showed promising results in reducing blood loss after delivery (Gülmezoglu; et al., 2007), But it is less effective than injectable uterotonics. (Gülmezoglu; et al., 2002), On the other hand, when it is added sublingually to injectable oxytocin after cesarean section, it shows more effectiveness than oxytocin alone, (Fekih; et al., 2009).

As a review of pharmacological, physiological, and clinical evidence surrounding the use of misoprostol for the treatment of postpartum hemorrhage, *G. Justus Hofmeyr*; et al., (2009) found that:

- The oral route of administration is the fastest but also the one associated with the shortest duration of action.
- The rectal route has slow uptake but prolonged duration of action.
- The buccal and sublingual route has rapid onset and prolonged duration of action with the greatest bioavailability.

So the sublingual route is considered the most promising route.

However some other researchers have found that the postpartum use of Misoprostol by sublingual route has a comparable effect in reducing postpartum hemorrhage as that of rectal use, (Abdelrahman Al-Harazi, Kaima Frass, 2009).

In a recent placebo controlled trial where deliveries take place by nurses or midwives at home, a significant reduction of postpartum hemorrhage and complications was obtained with the use of misoprostol 600 micrograms orally, (*G. Justus Hofmeyr; et al., 2009*). Also the WHO guidelines support the use of 10 IU oxytocin parenterally or misoprostol in a dose between 200 and 800 micrograms orally or sublingually, (*WHO statement, 2009*).

In addition to its uterotonic action, misoprostol has some known pharmacological effects as it (*Davis*; *et al.*, 2001):

- Inhibits platelet-activating factor and leukocyte adherence.
- Protects against gut irradiation injury.
- Improves nutrient absorption in cystic fibrosis patients.
- Lowers cholesterol level.
- Lessens the severity of peripheral vascular disease.
- Can be used to treat trigeminal neuralgia pain.

However, the use of misoprostol has been associated with some side effects, as it significantly increases the postpartum shivering and fever with no effect on the newborn, (*Shobhana S. Patted; et al., 2009*). In this regard, it was noticed that fever may reach above 40 degrees Celsius and may be associated with altered consciousness with the use of 800 micrograms or more misoprostol, (*WHO statement, 2009*).

Despite of these side effects mentioned above, (Shobhana S. Patted; et al., 2009) see that the benefits of misoprostol use are greater than the associated risk.

In the light of the above discussion, it was noticed that there is no enough researches regarding the least effective dose of misoprostol whether it is 400 or 600 micrograms with the least side effects.

AIM OF WORK

The aim of this study is to compare between the efficacy and side effects of 400 and 600 micrograms of misoprostol given via rectal route for prevention of postpartum hemorrhage.