Role of Multidetector Computed Tomography for Non Invasive Evaluation of Ischemic Heart Disease

Essay

Submitted for Partial Fulfillment of the Requirements for Master Degree in **Diagnostic Radiology**

By

Samia Aboelnour Abdeltwab Abdellateef

M.B., B.Ch Ain Shams University

Supervised by

Prof. Dr: Dalia Zaki Zidan

Assistant professor of Diagnostic Radiology Faculty of Medicine-Ain Shams University

Prof. Dr: Ahmed Fathi Abd Elghany

Assistant Lecturer of Diagnostic Radiology Faculty of medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2012

بسم الله الرحمن الرحيم سنريهم آياتنا في الآفاق و في أنفسهم حتى يتبين لهم أنه الحق

صدق الله العظيم

سورة فصلت .. آيه ٥٣

First of all thanks to Allah to whom I relate any success in achieving any work in my life.

I would like to express my sincere gratitude to Doctor/Dalia Zaki Zidan, Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her kind supervision, valuable advice and unlimited help in providing all the facilities for this work.

I would like to express my great appreciation to Doctor/Ahmed Fathi Abd El Ghany, Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his kind supervision, continuous support and encouragement throughout this work.

Last but not least, I want to thank my family for their endless help.

List of contents

Page
Acknowledgementi
List of contentsii
List of abbreviationsiii
List of figuresv
List of tablesxi
Introduction and Aim of the work
Chapter 1: Anatomical consideration of the heart and
coronary arteries:
a. Gross anatomy4
b. Radiological anatomy18
Chapter 2: Pathogenesis of ischemic heart disease43
Chapter 3: Technique of cardiac MSCT63
Chapter 4: Manifestations of ischemic heart disease
with illustrated cases87
Summary and conclusion
References
Arabic summary

List of abbreviations

3D	Three dimentional
ACS	Acute coronary syndrome
AVnode	Atrioventricular node.
BMI	Body mass index
BP	Betablockers
bpm	Beat per minute
CABG	Coronary artery bypass grafting
CAC	Coronary artery Calcium
CAD	Coronary artery disease
CCS	Chronic coronary syndrome
CCTA	Coronary CT angiography
COPD	Chronic obstructive pulmonary disease
CS	Coronary sinus
CTA	Computed tomographic angiography
CTCA	Computed tomographic coronary angiography
CTDE	Delayed-enhancement computed tomography
CTFP	first-pass perfusion computed tomography
EBCT	Electron beam computed tomography
ECG	Electrocardiographically
ED	Effective radiation dose
EF	Ejection fraction
FBP	Filtered back-projection algorithm
FOV	Field of view
GSV	Great saphenous vein
HR	Heart rate
HU	Hounsfield unit
IHD	Ischemic heart disease
IM	Inter muscular
IMA	Internal mammary arteries
IV	Interavenous
IV	Interventricular.
IVC	Inferior vena cava.
IVUS	Intravascular ultrasound
KV	Kilo volt

kVp	Kilovolts peak
LA	Left atrium
LAD	Left anterior descending artery
LCA	Left coronary artery
LCX	Left circumflex artery
LDL	Low-density lipoprotein
LIMA	Left internal mammary artery
LM	Left main
LV	Left ventricle
mAs	Milliampere
MDCT	Multi detector computed tomography
MI	Myocardial infarction
MIP	Maximum intensity porojection
MPR	Multi planar reformat
MSCT	Multislice computed tomography
mSv	Milliseiver (unit for radiation measurement)
MV	Mitral valve
NYHA	New york heart association
PACS	Picture archiving and communication system
PET	Positron emission tomography
PVs	Pulmonary veins
RA	Right atrium
RCA	Right coronary artery
RV	Right ventricle
SA node	Sinoatrial node
SBP	Systolic blood pressure
SMC	Smooth muscle cell
SNR	Signal to noise ratio
SPECT	Single photon emission computed tomography
SVC	Superior vena cava
TRO CT	Triple-rule-out computed tomography
VR	Volume averaging
VRT	Volume-rendering technique

List of figures

Figure	Title	Page
1-1	Anatomy of heart.	4
1-2	Position of the heart.	5
1-3	Interior of the pericardial sac.	7
1-4	Pericardial sac in relation to the sternum.	8
1-5	Aortic valve, aortic sinuses, and coronary arteries.	12
1-6	Coronary arteries and their branches.	13
1-7	Variations of the coronary arteries.	16
1-8	Vertical long-axis MPR image of the heart.	19
1-9	Horizontal long-axis MPR image of the heart.	20
1- 10	Horizontal long-axis MPR image illustrates calculation of the LA area.	21
1-11	Three-chamber MPR image shows the LV papillary muscles (arrow) and chordae tendineae.	22
1- 12	Coronal MPR image shows the LV papillary muscles.	22
1-13	4-chamber view that demonstrates the full extent of the right ventricular chamber size	23
1-14	Short-axis MPR image shows the mid-RV and mid-LV.	24
1-15	Sagittal MPR image shows the inferior vena cava, superior vena cava, LA, and RA.	25
1-16	MPR image shows the CS entering the RA. The normal thebesian valve and the LA are also depicted	25
1-17	Oblique MPR images of the heart.	26
1-18	Three-chamber MPR image shows the RV moderator band.	26
1-19	Horizontal long axis views of the heart as planned from a vertical long axis view.	27
1- 20	Vertical long-axis MPR image shows the normal LA appendage.	28
1-21	The mitral valve leaflets are better delineated by multi- slice CT as seen in (a) & (b), than the tricuspid valve as seen in (c).	29
1- 22	Axial MPR image (superoinferior view) demonstrates the aortic valve and its cusps in relation to the LA.	30

•

List of figures (cont.)

Figure	Title	Page
1-23	Direct comparison of segmental coronary artery anatomy.	31
1-24	Axial MPR image displays the origin of the coronary arteries from the aorta	32
1-25	Oblique axial (a) and vertical long-axis (b) MPR images show the normal LAD artery.	32
1-26	Oblique axial MPR (a) and VR (b) images show the septal branches and diagonal branches of the LAD artery.	33
1- 27	Oblique axial MPR (a) and VR (b) images show the LCX artery and obtuse marginal branches.	33
1-28	Oblique axial MPR image shows the RI branch.	34
1-29	Different types of left main coronary artery bifurcation.	34
1-30	MPR images (a, c) and VR image (b) show the RCA.	35
1-31	(a) VR image shows the inferior surface of the heart (b) VR image shows a codominant system (c) Coronal MPR image shows a left-dominant system.	35
1-32	VR images show the left (a) and right (b) segmental coronary arterial anatomy.	36
1-33	VR image shows the great cardiac vein.	38
1-34	Coronal VR image shows the four PVs emptying into the LA.	39
1-35	Anatomy of the superior vena cava.	39
1-36	64-slice CT scanners reveals the great thoracic vessels	40
1-37	Normal pulmonary arteries.	41

List of figures (cont.)

Figure	Title	Page
1-38	Three-dimensional view. The pulmonary arteries are depicted in blue, demonstrating third and fourth generation branches.	41
1-39	On an axial MPR image obtained inferior to the right pulmonary artery.	42
2-1	Total occlusion of the vessel by a large thrombus	49
2-2	a large amount of atherosclerotic plaque (p) deposited in the arterial wall	51
2-3	Significant stenosis, with lipid and calcification in the plaque.	52
3-1	Anatomic area evaluated in a single rotation of the X-ray tube. In MSCT, the higher the number of detectors, the wider the anatomic area evaluated during each rotation of the X-ray tube.	63
3-2	With prospective ECG-triggering, a sequential CT scan is started at a predefined point within the cardiac cycle.	72
3-3	For retrospective ECG-gating, a spiral MSCT scan at low pitch is performed while the patient's ECG is recorded simultaneously.	73
3-4	Scan setup and bolus-tracking images.	76
3-5	Timing bolus image acquisition.	80
4-1	Coronary calcium. 320-MDCT, non contrast axial image showing extensive calcifications.	90
4-2	Coronary CT images of curved view (A), stretched view (B), and cross sectional view (C)	91
4-3	Curved planar reformatted image acquired with a 64-slice CT angiography shows a non-calcified plaque	92
4-4	Curved planar reformatted image shows calcified plaques.	93
4-5	Curved planar reformatted image shows a mixed type of calcified plaque.	93
4-6	(a) Focally calcified plaque and (b) extensively calcified plaque are visualised at the right coronary and left anterior descending arteries	94

List of tables

Table	Title	Page
1	Arterial supply of the heart.	14
2	Normal quantitative LV values.	84
3	Normal quantitative RV values.	84
4	Severity of coronary artery stenosis on CT angiography.	103

INTRODUCTION

Although coronary angiography has become a safe procedure with only a small risk coronary arteries associated, the inconvenience for the patient and the economic burden have both fueled the quest to find an alternative, noninvasive method to visualize and assess coronary arteries(*Ohnesorge et al.*, 2000).

Since 1999, mechanical multidetector computed tomography (MDCT) systems with simultaneous acquisition of four slices and half-second scanner rotation have become available. Multi-row acquisition with these scanners allows for considerably improved visualization of the coronary arteries (Ohnesorge et al., 1999).

Two types of CT scanners are available for imaging the heart. The first is electron beam CT (EBCT), which is an older technology infrequently used today. The second is multidetector helical CT (MDCT), which represents most CT use. Electron beam CT does not use a mechanical rotating gantry. Instead, an electron gun generates electrons, which are then electromagnetically steered across a stationary tungsten anode (Gerber et al., 2002).

Much like contrast magnetic resonance (CMR), CT can also be used for assessing the extent of scar and tissue viability. Although the notion of using contrast-enhanced CT to assess viability is not new, recent advances in its temporal and spatial resolution with multidetector CT technology have renewed the clinical interest for this application (Gerber et al., 2006).

The 320-Multidetector CT has craniocaudal coverage of 16cm in a single gantry rotation, which allows coronary imaging in a single heartbeat in a majority of patients. This eliminates potential artifacts at the transitions zone between gantry rotations, which are still seen with current state of the art 64-slice systems. Coupled with prospective image acquisition, the radiation exposure appears to compare favorably to current CT systems (*Husmann et al.*, 2008).

Aim of the work

To highlight the role of Multi detector CT in the evaluation of ischemic heart disease and its importance of being non invasive diagnostic technique.

Anatomy of the heart

The heart has a pyramidal shape and lies in the anterior mediastinum immediately posterior to the central portion of the diaphragm (Fig. 1-1) (Sutton et al., 2003).

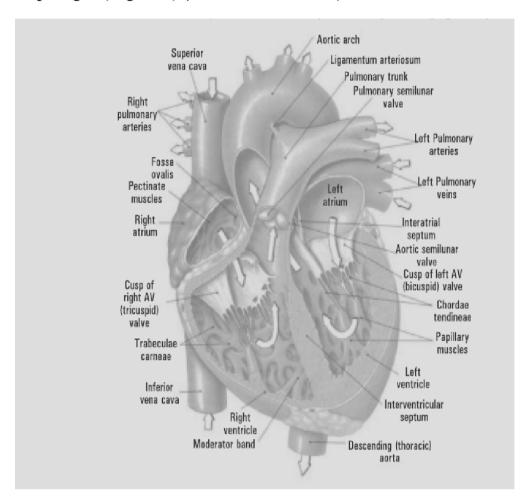


Fig. (1-1): Anatomy of heart (Urmil, 2010).

The pericardium

The pericardium is normally thin paper, measuring 2 mm or less. It is composed of two layers, the parietal layer and the serous layer. The tough outer parietal layer envelops the heart and attaches to the sternum and proximal great vessels; in fact, most of the ascending aorta and main pulmonary artery, portions of the venae cavae, and most of the pulmonary veins are intrapericardial. The inner, more delicate serous layer, lines both the fibrous pericardium and the outer surface of the heart and great vessels (Fig 1-2) (Malouf et al., 2005).

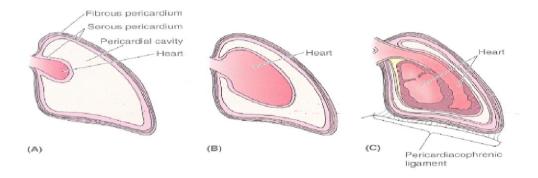


Fig. (1-2)

- (A) The heart occupies the middle mediastinum and is enclosed by the pericardium, composed of two parts. The tough,outer fibrous pericardium. Within it is a double-layered sac, the serous pericardium.
- (B) The developing heart invaginate the serous sac and obliterate the pericardial cavity.
- (C) Leaving only a potential space (Moore and Dalley, 1999).