IN VITRO ASSESSMENT OF COMBINATION OF BOTH LINEZOLID AND ERTAPENEM AS HIGHLY SYNERGESTIC EFFECT AGAINST MRSA

Thesis

Submitted for Partial Fulfillment of M.Sc. Degree In Clinical and chemical Pathology

By Suzan Abdel Hameed Abdel Samee M.B.,B.Ch.,

Supervised By Prof. Dr. Magda Salah El-Dine Gabr

Professor of Clinical and chemical Pathology Faculty of Medicine - Ain Shams University

Dr. Rania Ali Ammar

Assistant Professor of Clinical and chemical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2013

First of all, all gratitude is due to **Allah** for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to express my deep gratitude to **Prof. Dr.**Magda Salah El-Dine Gabr. Professor of Clinical Pathology,
Faculty of Medicine, Ain Shams University, for her continuous support, encouragement and valuable supervision of this work.

Also I am greatly indebted to **Dr. Raina Ali Ammar,** Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her patience, support and great help during the accomplishment of this work.

Finally, I would like to express sincerely my gratitude to my husband and my family, for their immense help, tolerance and support and to them I dedicate this work.

Suzan Abdel Hameed

List of Contents

Title	Page
Introduction	1
Aim of the work	4
Review of literature	5
Chapter I:Staphylococci	5
- Historical aspect	5
- Natural Habitat	5
- Morphology	6
- Eipidemiology	6
- virulence Factors of Staphylococcus aureus	7
- Patheogensis of staphylococcal infection	13
- Diseases caused by staphylococcus	14
Chapter II: Methicillin resistant staphyiococcus aurei	ıs 19
(MRSA)	19
- Historical aspect	19
- Epidemiology of MRSA	21
- Type of MRSA infection	22
 Risk factors for HA-MRSA infection 	24
- Community-Acquired MRSA (CA-MRSA):	26
- Resistance to methicillin	_0

Chapter III: Laboratory Diagnosis of Staphylococcal	34		
Infections	34		
- Identification of staphylococci	38		
 Laboratory Detection of Methicillin Resistant Sta- phylococci 	-		
Chapter IV: Antimicrobial Agents Active against MRSA	48		
- Vancomycin			
- Teicoplanin			
- Second generation glycopeptides			
- Cephalosporins	51		
- Linezolid			
- Combination therapy			
 Natural Therapy Used in treatment of Staphylococcal infections 	53 - 56		
Chapter V : Prevention and control of MRSA	58		
Subjects and Methods			
Results			
Discussion			
Summary			
Conclusion and Recommendations			
References			
Arabic Summary			

List of Tables

Table	No	Title	Page
Table	(1): V	Virulence factors of Staph aureus	12
Table	(2):	Characteristics of CA – MRSA and HA –	
	MRSA	A infections:	26
Table	(3): F	ormula of tryptone soya broth	65
Table	(4):	Formula of Mannitol Salt agar (MSA)-	
	(Oxoi	d)	68
Table	(5):	Formula of Mueller Hinton agar (MHA)-	
	(oxoic	1)	69
Table	(6):	Distribution of all isolates among different	
	types	of samples	82
Table	(7):	Distribution of all isolates according to risk	
	factor		83
Table	(8): I	Distribution of all isolates according to sex of	
	patien	t	84
Table	(9):	Correlation between Linezolid E-test and	
	combi	nation of both Linezolid and Ertapenem by	
	disk d	iffusion	88
Table	(10):	Correlation between combination of both	
	Linez	olid and Ertapenem by disk diffusion and	
	combi	nation of both antibiotics by E-test	90
Table	(11):	Correlation between combination of both	
	Linez	olid and Ertapenem by E-test and LZD E-test	91

List of Figures

Figure No.	Title Pa	ge
Figure (1): Pathogenic factors of Staphylococcus aureus,	
	with structural and secreted products both playing	
	roles as virulence factors.	.9
Figure (2)	: The group of antibiotics known as the β -lactams	
	include penicillins, cephalosporins, monobactams	
	and the carbapenems.	27
Figure (3)	: Schematic presentation of the Gram positive cell	
	wall. The cell wall is dominated by the thick	
	layers of peptidoglycan interspersed with teichoic	
	acids and lipoteichoic acids anchored to the	
	cytoplasmic membrane.	28
Figure (4): Action of β -lactam antibiotics on the	
	peptidoglycan structure of the bacterial cell wall?	29
Figure (5)	Regulation of <i>mec</i> A gene.	32
Figure (6)	: Denim-blue colonies of MRSA on Chromogenic	
	MRSA Agar (Hutchinson et al., 2005)	41
Figure (7)	Green colonies of Staph. aureus on S. aureus ID	
	medium (Jane et al., 2006)	42
Figure (8)	: E-Test (<i>Joyce et al.</i> , 2011).	44
Figure (9): Mannitol Salt Agar plate showing at the Rt:	
	colonies with bright yellow zone indicating	
	coagulase-positive staphylococci, Lt half of the	

plate remained as such (red colour) indicating
growth of CoNS76
Figure (10): E-test showing a clear zone of inhibition for
linezolid79
Figure (11): Synergestic effect between both linezolid and
ertapenem discs by disc diffusion method80
Figure (12): Synergestic effect between both linezolid and
ertapenem strips by E-test
Figure (13): Accurcy of Disc diffusion method for both
sensitivity and specificity85
Figure (14): Accurcy of E-test method for both sensitivity
and specificity86
Figure (15): Accurcy of combination by disc diffusion
method for both sensitivity and specificity 87
Figure (16): Accurcy of E-test combination method for both
sensitivity and specificity88
Figure (17): Correlation between Linezolid E-test and
combination of both Linezolid and Ertapenem by
disk diffusion89
Figure (18): Correlation between combination of both
Linezolid and Ertapenem by disk diffusion and
combination of both antibiotics by E-test91
Figure (19): Correlation between combination of both
Linezolid and Ertapenem by E-test and LZD E-
test92

List of Abbreviations

(CA-MRSA) Community-Acquired MRSA

(CCOHS) Canadian Centre for Occupational Health and Safety

(CDC) Centers for Disease Control and Prevention(CLSI) Clinical and Laboratory Standards Institute

(CONS) Coagula se negative staphylococci

(cSSSIs) Complicated skin and skin-structure infections

(DNase) Deoxyribonuclease test

(ETP) Ertapenem

(ICU) Intensive care unit

(Luk) Leukocidin(LZD) Linezolid

(LRS) Linezolid resistant Staphylococcus

(MASO) Mannitol salt agar with oxacillin

(MDRSP) Multidrugresistant Streptococcus pneumoniae

(MIC) Minimum inhibitory concentration

(MRSA) Methicillin resistant staphylococcus aureus

(MSSA) Methicillin-sensitive S. aureus

(ORSAB) Oxacillin resistant screening agar base test

(PBP2) Penicillin-binding protein PBP2'

(PCR) Polymerase chain reaction

(PRSP) Penicillin-resistant S. pneumoniae

(PVL) Valentine leucocidin

(SaG) S.aureus endo B-N-acetylglucosaminidase

(SA-RVS) S. aureus with reduced vancomycin susceptibility

(SSI) Surgical site infections

(Staph.) Staphylococcus

Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) became the leading nosocomial pathogen worldwide and seems to have spread into the community (*Kluytmans and Struelens*, 2009). The prevalence of CA-MRSA continued to rise; a metanalysis published in 2003 reported a pooled CA-MRSA prevalence rate of 30.2% in retrospective studies and a colonisation rate of 1.3% (*George and Lalitagauri*, 2010).

The reservoir of MRSA is the infected and colonized patients and the major mode of transmission is direct or indirect contact involving the hands of healthcare workers (*Luft and Dettenkofer*, 2010). Thus, active surveillance and timely identification of MRSA colonization of patients is an important infection control activity that helps to prevent nosocomial spread and is cost effective (*Wernitz et al.*, 2005).

There are several methods available to laboratories for detecting methicillin resistance. These include oxacillin disk test, automated susceptibility testing systems, and oxacillin agar screen plate. In addition, the cefoxitin disk test was recently recommended by the Clinical and Laboratory Standards Institute for prediction of mec A-mediated resistance (*CLSI*, 2007).

More rapid alternative methods for the detection of MRSA have been developed including the use of chromogenic media, which have been shown to be comparable or superior in sensitivity and specificity to traditional selective media (*Philippe et*

al., 2008). The use of mannitol salt agar supplemented with oxacillin and the use of the oxacillin resistance screening agar (ORSA) are two of the most commonly used culured methods (Compernolle et al., 2007).

Molecular techniques for the detection of mec A gene are viewed as the gold standard for determining MRSA. Polymerase chain reaction (PCR) for amplification of the mec A gene can be performed within few hours, providing same day results. However, these methods have certain disadvantages, including the need to batch clinical specimens, greater technical demands than culture, expensive reagents and the need for specialized laboratory equipment (Swenson, and Lonsway et al., 2007).

Methods to reduce nosocomial transmission of methicillinresistant Staphylococcus aureus (MRSA) include contact isolation precautions, measures to decolonise MRSA carriers, staff education, screening for contacts, and screening of risk groups for MRSA carriage at hospital admission. Microbiological screening at the point of hospital admission is the only opportunity to detect MRSA patients early enough to enable the implementation of timely contact isolation precautions that will reduce the subsequent nosocomial spread of this multiresistant organism (*Luft and Dettenkofer*, 2010)

Traditional antibiotics used in the treatment are not effective against MRSA as it has become resistant to multiple other antimicrobial agents, including aminoglycosides, fluoroquinolones, tetracyclines, and macrolides—lincosamides—streptogramins. MRSA has acquired reduced susceptibility to vancomycin, which has been reported in Hong Kong and Taiwan but not in Mainland China (*Wang et al.*, 2008).

Because of the multidrug resistance of MRSA and vancomycin-intermediate or resistant S. aureus, there is increasing need to develop new agents for the treatment of S. aureus infections. Tigecycline and linezolid have been used in clinical practice for resistant Gram-positive infections and ceftobiprole is in phase 3 of clinical development (*Davies et al.*, 2006).

New drugs are available in France (i.e. daptomycin, ertapenem, and doripenem) as well as those of antibacterial drugs currently in development (i.e. ceftaroline, dalbavancin, telavancin, oritavancin, iclaprim, and ramoplanin) or available in other countries (i.e. garenoxacin, sitafloxacin, and temocillin) (*Wang et al.*, 2008).

Aim of the Work

This work is aiming to assess incidence of linezolid resistance in MRSA and in vitro combination of linezolid and ertapenem as highly synergestic effect against MRSA.

Chapter I Staphylococci

Historical Aspect:

Staphylococci were first recovered from pus by Koch (1878) and Pasteur (1880) who cultivated them in liquid media. In (1881), Rosenbach obtained a pure culture of Staphylococci on solid media and he classified them according to their colony appearance into two species: Staphylococcus (Staph.) aureus (golden yellow colony), and Staph. albus (greyish white colony). Later on, the lemon colored colony, Staph. citrus, was added by Passett in 1885 (*Thorberg*, 2008).

Natural habitat:

Staphylococci are widely distributed in various environments. Natural populations are associated with skin, skin glands and mucous membranes of humans, as well as many animals. They are sometimes found in the intestinal, genitourinary, and upper respiratory tracts of these hosts. They have also been isolated from animal products and other sources, such as soil, sand, seawater, fresh water, dust, and air (*Tomasz et al.*, *2010*).

Staphylococcus capitis is found primarily in the skin and sebaceous gland of the scalp, forehead and neck whereas Staph. auricularis is found primarily in the external auditory canal (*Winn et al.*, 2006).

Morphology:

Bacteria of the genus Staphylococcus are gram-positive cocci that are microscopically observed as individual organisms, in pairs, and in irregular, grapelike clusters. The term Staphylococcus is derived from the Greek term staphyle, meaning "a bunch of grapes." Staphylococci are nonmotile, non–sporeforming, and catalase-positive bacteria. The cell wall contains peptidoglycan and teichoic acid. The organisms are resistant to temperature as high as 50°C, to high salt concentrations, and to drying. Colonies are usually large (6-8 mm in diameter), smooth, and translucent. The colonies of most strains are pigmented, ranging from cream-yellow to orange (*Belkum et al.*, 2009).

Epidemiology

Mode of transmission

Staphylococci are colonizers of various skin and mucosal surfaces. Infections are frequently acquired when:

• S. aureus spread from patient's endogenous strain to normally sterile site by traumatic introduction and from person to person by fomites, unwashed hands of health care coworkers which lead to patient colonization and potentially infected with antibiotic resistant strains (*Otter et al.*, 2010).