

سورة البقرة الآية: ٣٢

Updates in Perioperative Management of Secondary Pulmonary Hypertension During Mitral Valve Surgeries

Eassy

Submitted for Partial Fulfillment of MSc. Degree in Anesthesiology

By

Asmaa Ahmed Mahmoud

Supervised By

Prof. Dr. Hoda Omar Mahmoud

Professor of Anesthesiology

Faculty of Medicine – Ain shams University

Prof. Dr. Heba Bahaa El Din El Serwi

Assistant Professor of Anesthesiology Faculty of Medicine – Ain shams University

Dr. Amir Kamal Eshak

Lecturer of Anesthesiology

Faculty of Medicine – Ain shams University

Faculty of Medicine
Ain shams University
2013

التحديثات في علاج ارتفاع ضغط الدم الرئوي الثانوي أثناء جراحات الصمام الميترالي

رسالة توطئة للحصول على درجة الماجستير في التخدير

> مقدمة من أسماء أحمد محمود

تحت إشراف أ.د. هدى عمر محمود

> أستاذ التخدير كلية الطب-جامعة عين شمس

أد هبة بهاءالدين السروى

أستاذ مساعد التخدير كلية الطب-جامعة عين شمس

د أمير كمال إسحاق

مدرس التخدير كلية الطب-جامعة عين شمس

> كلية الطب جامعة عين شمس

- First thanks to Allah to whom I relate any success in achieving any work in my life.
- Hoda Omar Mahmoud Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for her most valuable advises and support all through the whole work and for dedicating much of her precious time to accomplish this work.
- Serwi Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for patience, support and great help during the accomplishment of this work.
- Finally, I would like to express sincerely my gratitude to Dr. Amir Kamal Eshak Saleh Lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for his unique effort, considerable help, assistance and knowledge he offered me through out the performance of this work.
- I would also like to thank My husband and My family for their support & encouragement.

Asmaa Ahmed Mahmoud

Contents

Subjects	Page
List of Abbreviations]
• List of tables	IV
• List of figures	V
• Introduction	1
Anatomical and physiological consideration	3
Pathophysiology of pulmonary hypertension	24
• Anesthetic management of pulmonary hypertension	36
• Summary	73
• References	75
Arabic summary	

List of Abbreviations

cAMP: Cyclic Adenine Mono Phosphate

CCBs : Calcium channel blockers

cGMP : Cyclic Guanine Mono Phosphate

CHD : Congenital heart disease

CI : Cardiac Index

CO : Cardiac Output

CPB : Cardio Pulmonary Bypass

CVP : Central Venous Pressure

EC : Endothelial cell

EDP : End diastolic pressure

EF: Ejection Fraction

ET : Endothelin

EtA : Endothelin-1 receptor type A

EtB : Endothelin-1 receptor type B

FPAH: Familial pulmonary artery hypertension

FPAH: Familial pulmonary artery hypertension

FRC: Functional residual capacity

FRC: Functional residual capacity

HPV: Hypoxic Pulmonary Vasoconstriction Reflex

HR: Heart Rate

IPAH : Idiopathic pulmonary artery hypertension

Kg : Kilogram

L : Liter

LA : Left Atrium

LAP: Left atrial pressure

≥ List of Abbreviations

LV : Left Ventricle

LVOT: Left Ventricle Outflow Tract

MAP: Mean Arterial Pressure

ml : Milliliter

mmHg: Millimeter Mercury

MPAP: Mean Pulmonary Artery Pressure

NO : Nitric Oxide

NOS: Nitric Oxide Synthetase

NYHA: New York Heart Association

PA: Pulmonary Artery

PAH: Pulmonary Artery Hypertension

PaO2 : Arterial O2 tension

PAOP: Pulmonary artery occlusive pressure

PAP: Pulmonary Artery Pressure

PASP: Pulmonary Artery Systolic Pressure

PCH: Pulmonary capillary hemangiomatosis

PCWP: Pulmonary Capillary Wedge Pressure

PDE: Phosphodiestrase

PDEI III: Phospho Di-esterase Enzyme Inhibitor III

PDEI V: Phospho Di-esterase Enzyme Inhibitor V

PEEP: Positive end expiratory pressure

PetCO2: Partial pressure of end tidal co2

PGI: Prostaglandine inhibitor

PH: Pulmonary Hypertension

PPH: Primary Pulmonary Hypertension

PPM: Prothesis patient mismatch

PVOD: Pulmonary Veno-Occlusive Disease

PVR: Pulmonary vascular resistance

≥ List of Abbreviations

PVR : Pulmonary Vascular resistance

RAP: Right Atrial Pressure

RV : Right Ventricle

RVAD: Right ventricle assist device

RVEDV: Right ventricular end diastolic volume

RVEF: Right ventricular ejection fraction

RVP: Right ventricular pressure

SaO2 : Arterial Oxygen Saturation

ScVO2 : Central venous saturation

SPAH: Secondary Pulmonary Hypertension

SV : Stroke Volume

SVR : Systemic Vascular Resistance

TEE: Trans Esophageal Echocardiography

TR: Tricuspid regurge

TSM: Trabeculae septum marginalis

TTE: Trans Thoracic Echocardiography

Ve\Vco2 : Ventilatory equivalent

VO2 : Oxygen consumption

WHO: World Health Organization

🖎 List of Tables

List of Tables

Tab. No.	Title	Page
Table (1-1)	Characteristics of right and left ventricle.	5
Table (3-1)	Functional classification of pulmonary hypertension.	40
Table (3-2)	Agents used for therapeutic management of pulmonary hypertension.	70

🖎 List of Figures

List of figures

Fig. No.	Title	Page
Figure (1-1)	Anatomy of the right ventricle.	4
Figure(1-2)	The pulmonary circulation.	6
Figure(1-3)	Pressure volume loop of the right	10
	ventricle.	
Figure(1-4)	Relationship between lung volume and	12
	pulmonary vascular resistance.	
Figure(1-5)	Responses of right and left ventricle to	16
	experimental increase in afterload.	
Figure(1-6)	The effect of cardiac output on mean	19
	pulmonary artery pressure.	
Figure(2-1)	Relationship between left ventricular	31
	dysfunction and secondary events that	
	contribute to development of	
	pulmonary hypertension.	
Figure(2-2)	Relationship between mean pulmonary	34
	artery pressure and plasma Endothelin-	
	1 levels in patients with symptomatic	
	chronic heart failure.	
Figure(3-1)	Transthoracic echogardiography.	43
Figure(3-2)	Mechanism of action of vasodilators.	60
Figure(3-3)	Mechanism of action of inotropes.	68

Introduction

The presence of pulmonary arterial hypertension (PAH) is a significant predictor of major perioperative cardiovascular complications in patient undergoing cardiac or non-cardiac surgery. The PAH is commonly considered to exist when the mean pulmonary artery exceeds 25mmHg at rest & 50mmHg during exercise (*Farber*, 2004).

PAH is a major problem during the perioperative period for adults with congenital heart disease, longstanding valvular heart disease & those undergoing cardiac transplantation.

Although the surgical correction of congenital defect or valvular heart disease often lead to substantial decrease in the pulmonary artery pressure(PAP), careful & stringent perioperative management is curial for improving the outcome in these patients (*Shim et al.*, 2006).

There have been multiple classes of drugs developed for the treatment of PAH such as Nitroglycerine & sodium nitroprusside are the oldest pulmonary vasodilators, later phosphodiestrase inhibitors were introduced such as Milrinone (PDE-3-inhibitors) & Sildenafil (PDE-5-inhibitors) and Prostaglandins, among epoprostenol iloprost. Also Levosimendan, Adenosine, Bonstan and Brain natriuretic peptide (Nieminen et al., 2008).

All intravenous agents suffers from disadvantage of systemic vasodilatation lead to hypotension therefore, inhaled drugs are more preferable such as inhaled Nitric Oxide, nitroglycerine, sodium nitroprusside, phosphodiestrase inhibitors and prostaglandins. Also the use of inhaled Milrinone was demonstrated. Also, inhaled iloprost has been seen to be effective as a rescue therapy for pulmonary hypertensive crises (*Limsuwan et al.*, 2008).

It is clear that several newer options are now available for management of perioperative PAH and right ventricular failure. However the anesthesiologist must not ignore the basic prinples of anesthesia and must avoid hypoxia, hypercapnia, acidosis and hypothermia which can lead to pulmonary vasoconstriction, also careful airway manipulations and pain management should be considered. The next step should be the use of appropriate inotropes and selective pulmonary vasodilators based on availability of inhaled agents which is the first line of therapy (*Mandal et al.*, 2010).

Aim of the work

Aim of the present work is to highlight the perioperative management of a patient with secondary pulmonary hypertension undergoing mitral valve surgery to prevent episodes of pulmonary hypertensive crises and to decrease the risk of right ventricular failure in such patients.

Functional Anatomy of Right ventricle

The anatomy of the right ventricle (RV) is both unique and complex. The RV appears triangular when viewed laterally, whereas in cross-section, it appears crescent shaped.

Although the RV appears smaller than the Left ventricle (LV) in the four-chamber view, RV volume is, in fact, larger than the LV volume. Based on magnetic resonance imaging, the normal range of RV end-diastolic volume (RVEDV) is 49–101 mL/m² (in males, 55–105 mL/m; in females, 48–87 mL/m²), whereas the normal range of LV end-diastolic volume is 44–89 mL/m² (in males, 47–92 mL/m²; in females, 41–81 mL/m²) (*Lorenz*, *1999*).

In the normal adult, RV mass is also only about one-sixth that of LV mass (*Dell 'Italia*, 1991).

In childhood, there is a progressive regression of RV hypertrophy as pulmonary vascular resistance (PVR) decreases.

Traditionally, the RV has been divided into two components: the sinus (inflow) and the conus (infundibulum).

The RV sinus extends from the tricuspid valve (inflow region) and includes the trabeculated (apical) portion of the ventricle (Fig.1-1). The RV conus is usually free of muscular trabeculations and extends from the septomarginal band to the pulmonary valve (arterial trunk). In the anatomic LV, subaortic conal absorption occurs, which explains the absence of an infundibular portion (*Dell 'Italia*, 1991).

Three prominent muscular bands divide the RV: the parietal, the septal and the moderator band. The parietal band and the infundibular septum make-up the crista supraventricularis which separates the sinus and the conus regions.

The moderator band extends from the base of the anterior papillary muscle to the ventricular septum. In the study of complex congenital heart disease (CHD), it may be more useful to divide the RV into three parts: an inflow region, the trabeculated apical myocardium, and the outflow region (infundibulum) (Fig.1-1).

In hearts with congenital malformations, one or more of the three components may be rudimentary or absent. (Table1_1) summarizes key anatomical and physiological features of the RV and LV (*Farb et al.*, 1992).

Fig. (1-1): Right ventricular anatomy. The three regions: the inflow, the trabeculated apex, and the infundibulum are shown with detailed anatomical aspect. 1, pulmonary valve; 2, pulmonary annulus; 3, crista supraventricular is; 4, tricus- pid valve; 5, right ventricular anterior wall; 6, anterior limb of trabeculae septum marginalis (TSM); 7, body of TSM; 8, posterior limb of TSM; 9, medial papillary muscle; 10, anterior papillary muscle. Adapted with permission from Denault et al.