APELIN AS A CARDIOVASCULAR RISK MARKER IN TYPE 2 DIABETES

Thesis

Submitted for Partial Fulfillment of M.D degree in Internal Medicine

By

Ahmed Mohamed Bahaa El-Din

Master Degree of Internal Medicine Faculty of Medicine-Ain Shams University

Under Supervision of

Prof. Dr. / Mohammad Hesham EL-Gayar

Professor of Internal Medicine and Endocrinology

Faculty of Medicine, Ain Shams University

Dr./ Inas Mohamed Sabry
Assistant Professor of Internal Medicine and Endocrinology
Faculty of Medicine- Ain Shams University

Dr./ Khaled Mahmoud Makboul

Assistant Professor of Internal Medicine and Endocrinology
Faculty of Medicine-Ain Shams University

Dr. / Iman Zaki Ahmad
Assistant Professor of Internal Medicine and Endocrinology
Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain Shams University 2012

APELIN AS A CARDIOVASCULAR RISK MARKER IN TYPE 2 DIABETES

Thesis Submitted for Partial Fulfillment of M.D degree in Internal Medicine

By Ahmed Mohamed Bahaa El-Din

Master Degree of Internal Medicine Faculty of Medicine-Ain Shams University

Under Supervision of

Dr. Mohammad Hesham EL Gayar

Professor of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Dr. Inas Mohamed Sabry

Assistant Professor of Internal Medicine and Endocrinology Faculty of Medicine- Ain Shams University

Dr. Khaled Mahmoud Makboul

Assistant Professor of Internal Medicine and Endocrinology Faculty of Medicine-Ain Shams University

Dr. Iman Zaki Ahmad

Assistant Professor of Internal Medicine and Endocrinology Faculty of Medicine-Ain Shams UniversitY

> Faculty of Medicine Ain Shams University 2013

الأبلين كدليل خطوره للاصابه بأمراض القلب والأوعيه الدمويه في مرضي السكر من النوع الثاني

رسالة

آندرع بك ح شهك على خنج بطهخ قآنه عن المنطق المنطق المنطق المنطق المنطقة المنط

مقدمه من الطبيب

أحمد محمد بهاء الدين

ماجستير الباطنه العامه - كليه الطب - جامعة عين شمس

تحت اشراف

الأستاذ الدكتور/ محمد هشام الجيار آزبَّد آلف طهش منطه هذا طهن شداد؟ في بطس اجدُلع بهم سداز

الدكتوره/ إيناس محمد صبري آزةتد لزدّع آلف طهطش منطه عدّل طهن طها شلدً؟ تي بطن اجداع بي مسلر

الدكتور/خالد محمود مقبول آزتند لزدّىخ آلىض طهطش منطه مدّلذ طهنخ شك شلدً؟ تى بطنس ا-جدّلع بديم سدله ز

الدكتوره/ إيمان زكي أحمد ئزتئد لزدُع آلفض ططش منطعة لدهائن شلاء؟ تكي بطس ا-جالع برس مدله ز

> كلية الطب جامعة عين شمس 2012

List of Contents

	Page
Acknowledgement	I
List of Abbreviations	
List of Tables	V
List of Figures	VII
Introductions & Aim of the work	1
Review of Literature:	
I- Apelin	4
II- Obesity	
III- Insulin resistance	
IV- Carotid atherosclerosis	78
V – Correlation between Carotid Intimal/Medial	
Thickness and Atherosclerosis	104
Patients & Methods	116
Results	132
Discussion	
Summary	
Conclusions & Recommendations	
References	
Arabic Summary	

Acknowledgement

First and above all thanks for **Allah** who enabled me to achieve this work.

I would like to express my utmost and sincere gratitude and cordial appreciation to **Prof. Dr./ Mohammad Hesham EL-Gayar,** Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, for his continuous encouragement, generous assistance and valuable guidance during the whole period of this work.

I am particularly indebted to **Dr./ Inas Mohamed Sabry,** Assistant Professor of Internal Medicine and
Endocrinology, Faculty of Medicine- Ain Shams
University, who spared no efforts in helping me through
this thesis, thanks for her keen supervision and follow up.

I wish to express my deepest thanks and gratitude to **Dr./ Khaled Mahmoud Makboul,** Assistant Professor of Internal Medicine and Endocrinology, Faculty of Medicine-Ain Shams University, for his valuable help and sincere guidance.

I am grateful to **Dr./Iman Zaki Ahmad**, Assistant Professor of Internal Medicine and Endocrinology, Faculty of Medicine-Ain Shams University, for her great help for me in making this work to see the light.

List of Abbreviations

AAN	: American Academy of Neurology
ACE	: Angiotensin converting
ADH	: Antidiuretic hormone
AIT	: Adaptive intimal thickening
A-LI	: Apelin-like immunoreactivity
AMPK	: AMP-activated protein kinase
Ang II	: Angiotensin II
APJ	: Angiotensin like 1 receptor
AT1	: Angiotensin II type 1
ATGL	: Adipocyte triglyceride lipase
atRA	: All trans retinoic acid
BMI	: Body mass index
BNP	: Brain natruretic peptide
CCA	: Common carotid artery
CCL2	: C-chemokine ligand 2
CDUS	: Carotid duplex ultrasound
CEMRA	: Contrast enhanced MRA
CIMT	: Carotid intimal-medial thickness
CRP	: C-reactive protein
CRT	: Cardiac resynchronization therapy
DAG	: Diacylglycerol
DCM	: Dilated cardiomyopathy
DSA	: Digital subtraction angiography
EASIA	: Enzyme Amplified Sensitivity Immunoassay
EDV	: End -diastolic velocity
GLUT2	: Glucose transporter 2
H&E	: Hematoxylin and eosin
HDL-C	: High density lipoprotein
HMG-CoA	: 3-hydroxy-3-methyglutaryl-coenzyme A
HOMA	: Homeostatic Model Assessment
HRP	: Horseradish peroxidase
HSL	: Hormone-sensitive lipase
IL-1	: Interleukin 1
IL-6	: Interleukin 6
IRS-1	: Insulin receptor substrate 1
IVUS	: Intravascular ultrasound
L-Ca ²⁺	: L-type calcium channels
LCN2	: Lipocalin-2

List of Abbreviations (Cont.)

LPL	: Lipoprotein lipase
MAbs	: Monoclonal antibodies
MCA	: Middle cerebral artery
MCP1	: Monocyte chemoattractant protein 1
MetS	: Metabolic syndrome
MMPs	: Matrix metalloproteinases
MRA	: Magnetic resonance angiography
mRNA	: Messenger RNA
NAD	: Nicotinamide adenine dinucleotide
NAFLD	: Non-alcoholic fatty liver disease
Nampt	: Nicotinamide phosphoribosyltransferase
NASH	: Non-alcoholic steatohepatitis
NCX	: Na ⁺ -Ca ²⁺ exchanger
NF-κB	: Nuclear factor kappa B
NGAL	: Neutrophil gelatinase-associated lipocalin
NHE	: Na ⁺ -H ⁺ exchanger
NMN	: Nicotinamide mononucleotide
NO	: Nitric oxide
NOS	: Nitric oxide synthase
PAI-1	: Plasminogen activator inhibitor-1
PBEF	: Pre-B-cell colony-enhancing factor
PCOS	: Polycystic ovary syndrome
peak dP/dT	: Peak rate of left ventricular pressure rise
PET	: Positron emission tomography
PI 3-kinase	: Phosphatidylinositol 3-kinase
PIT	: Pathological intimal thickening
PKA	: Protein kinase A
PKC	: Protein kinase C
PLC	: Phospholipase C
PPAR	: Peroxisome proliferator activated receptor
PSV	: Peak systolic velocity
RAS	: Renin–angiotensin system
RBP4	: Retinol binding protein-4
RELMs	: Resistin-like molecule
ERISK	: Enzyme reperfusion injury salvage kinase
ROS	: Reactive oxygen species
RyR	: Ryanodine receptor

List of Abbreviations (Cont.)

SAA	: Serum amyloid protein
SERCA ₂ A	: Sarcoendoplasmic reticulum Ca ²⁺ - adenosine
	triphosphatase
SMA	: Smooth muscle cell α-actin
SMCs	: Smooth muscle cells
SR	: Sarcoplasmic reticulum
SREBP	: Sterol regulatory element- binding protein
T2DM	: Type 2 diabetes Mellitus
TCD	: Transcranial Doppler
TIA	: Transient ischemic attack
TMB	: Tetramethylbenzydine
TNF-α	: Tumor necrosis factor alpha
TOF	: Time-of-flight
VEGF	: Vascular endothelial growth factor
Visfatin	: Visceral adipose tissue-derived serpin
VLDL	: Very low-density lipoprotein
WAT	: White adipose tissue

List of Tables

Page
Table 1: Adipokines involved in energy balance/ metabolism36
Table 2: Adipocytokines, chemokines, vascular proteins, and other proinflammatory markers produced in WAT and systemic sites and involved in the inflammatory-obesity responses
Table 3: Descriptive statistics
Table 4: Shows comparison between the studied groups as regard the sex
Table 5: Shows comparison between the studied groups as regard the age
Table 6: Shows comparison between the studied groups as regard the anthropometric measurements
Table 7: Shows comparison between the studied groups as regard the FBS, HbA1c, insulin and HOMA-IR
Table 8: Shows comparison among the studied groups as regard the lipid profile
Table 9: Shows comparison between the studied groups as regard the hs.CRP
Table 10: Shows comparison between the studied groups as regard the serum apelin
Table 11: Shows comparison between the studied groups as regard the CIMT
Table 12: Shows correlation of apelin to different clinical and biochemical parameters in diabetic obese patients 151
Table 13: Shows correlation of apelin to different clinical and biochemical parameters in diabetic non obese patients 152
Table 14: Shows correlation of apelin to different clinical and biochemical parameters in obese non diabetic subjects 153
Table 15: Shows correlation of apelin to different clinical and biochemical parameters in non obese non diabetic subjects

List of Tables (Cont.)

		Page
Table	16: Correlation of hs.CRP to other clinical and biochemical data in diabetic obese patients	155
Table	17: Correlation of hs.CRP to other clinical and biochemical data in diabetic non obese patients	156
Table	18: Correlation of hs.CRP to other clinical and biochemical data in obese non diabetic subjects	157
Table	19: Correlation of hs.CRP to other clinical and biochemical data in non obese non diabetic subjects	158
Table 2	20: Correlation of CIMT to other clinical and biochemical data in obese diabetic patients	159
Table 2	21: Correlation of CIMT to other clinical and biochemical data in lean diabetic patients	160
Table 2	22: Correlation of CIMT to other clinical and biochemical data in obese non diabetic subjects	161
Table 2	23: Correlation of CIMT to other clinical and biochemical data in non obese non diabetic subjects	162
Table	24: Forward Stepwise Regression Analysis for determination of the most important predictors of CIMT	163
Table 2	25: Shows correlation of apelin to different clinical and biochemical parameters in all studied individuals	164
Table	26: Correlation of hs.CRP to other clinical and biochemical data in all studied groups	165
Table 2	27: Correlation of CIMT to other clinical and biochemical data in all studied groups	166

List of Figures

Pag	ge
Figure 1: Proposed actions of apelin in cardiac muscle contraction 11	
Figure 2: The role of apelin in heart failure	
Figure 3: Obesity is associated with local and systemic inflammation31	
Figure 4: Fat deposition in obesity	
Figure 5: Expression of the leptin receptor in human atherosclerotic lesions	
Figure 6: Hyperleptinemia and cardiovascular risk	
Figure 7: Insulin resistance, impaired insulin secretion, and fasting glucose in relation to micro and macrovascular diseases63	
Figure 8: Independent relationship of intimal thickness and carotid atherosclerosis	
Figure 9: Shows comparison between the mean values for age in the 4 studied groups	
Figure 10: Shows comparison between the studied groups as regard the mean value of BMI	
Figure 11: Shows comparison between the studied groups as regard the mean value of waist circumference 168	
Figure 12: Shows comparison between the different groups as regard the mean value of HbA1C, insulin and HOMA-IR168	
Figure 13: Shows comparison between the 4 groups as regard the lipid profile including the mean of total cholesterol, triglycerides, LDL-C and HDL-C	
Figure 14: Shows comparison between the studied groups as regard the mean of hs.CRP	
Figure 15: Mean values of apelin in the different 4groups	
Figure 16: Shows comparison between different groups as regard the mean values of CIM	
Figure 17: Shows correlation between apelin and CIMT in the diabetic obese patients	
Figure 18: Shows correlation between apelin and hs.CRP in obese non diabetic individuals	
Figure 19: Shows correlation between hs.CRP and BMI in diabetic obese patients	
Figure 20: Correlation between CIMT and HDL-C in diabetic obese patients	

مقدمه

لقد تم وصف الأعراض الناتجه عن مرض تصلب وانسداد الشريان السباتي للمره الأولي عن طريق ميلر سنة 1951 وقد أرجع وجود علاقه بين تصلب الشريان السباتي عند تفرعه وأعراض قصور الدوره الدمويه في العين والمخ. وقد شهد العصر الحديث تطور غير عادي في طرق التشخيص والعلاج لمرضي انسداد الشريان السباتي.

ويحدث تصلب الشيان السباتي بشكل شائع علي بعد 2سم من تفرع الشريان الرئيسي و غالبا ما يشمل الجانب الخلفي من الشريان. وتكبر الكتله المتصلبه في الحجم وتصل الي أسفل حتى تغلق الشريان السباتي الرئيسي.

وبصرف النظر عن مكان انسداد الشريان فقد وجد أنه يؤثر في حدوث الجلطات الدماغيه في دراسه شملت كبار السن من الرجال والنساء وكذلك زيادة معدلات الوفاه. وبالاضافه الي أن الضيق في سعة الشريان بوجود الجسم المتصلب والذي يزداد حجما فان الجلطه يمكن أن تكون مترتبه علي وجود هذا الجسم المتصلب والتي يمكن أن تؤدي لمزيد من الضيق في الشريان.

ان الأهميه الاكلينيكيه لزيادة المقاومه ضد الأنسولين داخل الجسم لا يمكن اغفالها وذلك بعد معرفة وجود مخاطر تؤدي للوفاه وحدوث بعض الاعاقات المزمنه والتي تبدو نتيجه منطقيه لوجود هذه المقاومه للأنسولين.

وهناك العديد من الدلائل المأخوزه في الأعتبار والتي تربط بين مقاومة الأنسولين وارتفاع نسبة السكر ,ارتفاع ضغط الدم,ارتفاع الدهون بالدم وتصلب الشرايين وأيضا حدوث بعض الأورام السرطانيه.

ويبدو واضحا أن مقاومة الأنسولين لها علاقه بالجينات فهي توجد بين الأبناء لاباء من مرضي السكر من النوع الثاني وينتشر أيضا في العائلات. وهناك بعض الأسباب التي تؤدي لحدوث هذه الزياده في نسبه الأنسولين مثل السمنه ونمط الحياه الغير رياضي والحمل وزيادة الهرمونات.

ان الابلين هو هرمون تم اكتشافه لأول مره عام 1998 وأماكن وجود مستقبلات له هي التي تحدد الوظائف المختلفه لهذا الهرمون.فمثلا المستقبلات الموجوده في الأو عيه الدمويه تساهم في التحكم في ضغط الدم وتنشيط هذه المستقبلات يعمل علي تكوين أو عيه دمويه جديده. ودور الابلين في انقاص الضغط ناتج عن تحفيز المستقبلات الموجوده في السطح الداخلي للوعاء الدموي مما يؤدي الي افرتز أوكسيد النيتريت والذي بدوره يؤدي الي ارتخاء الأو عيه الدمويه والعضلات الموجوده في جدار الشريان.

الهدف من الدراسه:

بحث وجود علاقه بين نسبة هرمون الأبلين وسمك الطبقه الوسطي والداخليه من الشريان السباتي في مرضي السكر من النوع الثاني , وكذلك البروتين المتفاعل سي عالي الحساسيه ومناعة الأنسولين كدلائل لحدوث تصلب الشرايين

طريقه تنفيذ الدراسه واختيار المرضى:

سوف يتم اجراء هذه الدراسه علي ثمانين شخصا وسوف يتم اختيار هم من مستشفي جامعة عين شمس ويتم تقسيم هؤلاء المرضى الى:

*المجموعه الأولى:

خمسون مريضا يعانون من السكر سيتم تقسيمهم الى:

- 1. 25 مريضا يعانون من السمنه
- 2. 25 مريضا لا يعانون من السمنه

* المجموعه الثانيه:

ثلاثون شخصا لا يعانون من السكر سيتم تقسيمهم الى:

- 1. 15 شخصا يعانون من السمنه
- 2. 15 شخصا لا يعانون من السمنه

*المعايير التي سيتم علي أساسها اختيار المرضي:

- 1. مرضي السكر من النوع الثاني من الجنسين علي ألا تزيد مدة المرض عن 5 سنوات.
 - 2. وظائف الكبد والكلى في المعدل الطبيعي.
 - 3. ضغط الدم أقل من 80\130
- 4. توقيع موافقه رسميه من المريض نفسه علي اجراء التجربه أو من القائم علي رعايته وهذه الموافقه التفصيليه تجعل المريض علي علم بالقواعد والناحيه الأخلاقيه الخاصه بتطبيق هذه الدراسه.

*المعايير التي سيتم علي أساسها استبعاد المرضي:

- 1. مرضى الغدد الصماء.
- 2. مرضى القلب والأوعيه الدمويه.
- 3. المرضى المستخدمون لعقاقير لتخفيض نسبة الدهون.
 - 4. المرضى المستخدمون للكورتيزون.
- 5. المرضي المستخدموت لأي عقار يؤثر على نسبة الدهون في الجسم.

وسوف يتم اجراء الأتى لهؤلاء المرضى:

- ♦ فحص المريض اكلينيكيا وأخذ التاريخ المرضى بالكامل للمريض.
- ❖ قياس نسبه السكر صائم وبعد الأكل بساعتين والهيمو جلوبين السكري.
 - ❖ قياس نسبه الدهون الثلاثيه والكوليسترول.
 - قياس نسبة هرمون الأبلين.
- ❖ قياس سمك الطبقه الوسطي و الداخليه في الشريان السباتي باستخدام الموجات فوق الصوتيه بدرجه نقاء عاليه.
 - قياس مناعة الأنسولين.
 - قياس البروتين المتفاعل سي عالى الحساسيه.
 - قياس كتلة الجسم ومحيط الوسط والخصر