

Ain Shams Universty Faculty Of Engineering Electronics and Communication Engineering Department.

A Proposed Adaptive Error Concealment Algorithm for Block Loss in Multiple View Video Coding

By Eng. Mohamed Fathy Mohamed Ebian

A DISSERTATION IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

Electronics & Communication Engineering

Committee in charge:

Prof. Dr Salwa Elramly

Electronics & Communication Eng Dept. Faculty of engineering - Ain Shams University

Prof Dr. Mohamed Elsharkawy

Electronic and communication Dept.
Egypt -Japan University of Science and Technology

Cairo-Egypt 2013

Electronics & Communication Engineering Department.

Declaration

A Proposed Adaptive Error

Concealment Algorithm for Block

Student name: Mohamed Fathy Mohamed Ebian

Thesis Title:

Loss in Multiple View Video Coding

Examination committee:

Name, title and affiliation signature

1. Prof. Paul Salama,
Professor, Department of electrical & Computer Engineering, Indiana University, USA

2. Prof. Abdelhalem A.Zekry,
Professor, Department of electronic & communication, Faculty of Engineering, Ain Shams University, Egypt

2013

3. Prof. Salwa H. El Ramly,

Ain Shams University , Egypt

Professor, Department of electronic & communication, Faculty of Engineering,

ABSTRACT

Efficient compression of multi-view images and videos is an open and interesting research issue that has been attracting the attention of both academic and industrial world during the last years. The considerable amount of information produced by multi-camera acquisition systems requires effective coding algorithms in order to reduce the amount of transmitted data while guaranteeing a good visual quality in the reconstructed sequence. There are many applications for the multi view imaging like Three Dimensions Television (3DTV) and free viewpoint video (FVV) systems. 3DTV and FVV used in number of new applications in entertainment, medicine, remote manipulation, gaming and art.

The classical approach of multi-view coding is an extension of the H.264/AVC video coding standard, based on motion estimation and compensation and on disparity estimation and compensation along temporal and view dimensions respectively. The MVC adopts the hierarchical B prediction structure that exploits the inter-view correlations as well as spatio-temporal correlations in multi-view video sequences to achieve a high coding gain. The prediction structure, however, makes compressed bitstreams very sensitive to transmission errors. If an error occurs in a frame, it propagates to adjacent views and subsequent frames, degrading the reconstructed video quality severely.

The standard of MVC only considers the proper definition of the syntaxes and definitions of the bit-stream and it does not give any solution for erroneous bit-streams.

Most of previous algorithms did not take into account neither the size of the lost Macro Block (MB) nor the selection of candidate MBs according to current used view in concealment operation. The present thesis considers those points.

In this thesis, we propose efficient Error Concealment (EC) algorithms for multi-view sequences corrupted by an error mask. The locations of lost MBs assumed to be known, three EC algorithms exploiting the property of the hierarchical B prediction structure to conceal block losses are proposed. The proposed algorithms are inserted in MVC standard software JMVC version 8.0. Simple error detection algorithm is proposed to determine the locations of corrupted MBs, which are generated with MBs loss due to intra prediction. The type of MBs may be inter or intra. The size of MB may be 16x16, 16x8, 8x16 or 8x8.

For intra lost MBs, Spatial Inter View (SIV) algorithm is proposed for concealment in the three developed algorithms.

The first proposed algorithm conceals the lost and corrupted MBs according to lost MB's types and sizes using a proposed Outer Boundary Match Algorithm (OBMA) with variable size. So it adaptively changes its behaviour according to the size of lost inter MBs. Then two enhancement algorithms are applied to enhance the initially concealed MBs depending on the MB's size. Weighted Block Motion and Disparity Concealment (WBMDC) algorithm is proposed for 16x16 MB enhancement and Overlapped Block Motion Compensation (OBMC) algorithm is proposed for other MBs sizes.

The second proposed algorithm adaptively changes its behaviour according to the size of lost inter MBs during concealing the lost inter MBs and it adaptively generates the required candidates MBs according to the current used view in error concealment operation to get more similar MBs.

The third proposed algorithm mixes the first algorithm and the second algorithm to get higher objective and subjective results. The third algorithm adaptively changes its behaviour according to the size of the lost MBs to conceal them, then it adaptively

generates the required candidates MBs according to the current view to initially conceal the lost MBs. The initial concealed MBs are enhanced using the proposed enhancement algorithms in the first algorithm. The WBMDC algorithm is proposed for 16x16 MB enhancement and OBMC algorithm is proposed for other MBs sizes enhancement.

Experimental results show that the visual quality of decoded frames by decoder software with proposed EC algorithms is improved and the PSNR values are clearly increased comparing to applying normal decoder software.

Keywords- Video coding; H.264/AVC; Multi view video coding; Error concealment algorithms; Spatial and temporal error concealment algorithms.

ACKNOWLEDGMENTS

I would like first to express my utmost gratitude to my two supervisors, *Prof. Dr. Salwa Elramly and Prof. Dr. Mohamed Elsharkawy*, for their guidance, support, and encouragement. They have created an excellent academic environment to make me freely pursuit my research interests and stimulate me for academic excellence

I would also be very grateful to my friend *Eng Bassam* form Zagazig University for spending time in understanding MVC software standard.

I also would like to express my appreciation to my general manger and my colleagues in Channel 4, Engineering Sector of Egyptian Television (ERTU).

Finally, I am grateful to my family; my father, my mother, my wife, my brother and my sisters for their support, patience, and encouragement during my graduate journey.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of PhD of Science in Electrical Engineering (Electronics and Communication Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communication Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Date:

Name: Mohamed Fathy Mohamed Ebian

TABLE OF CONTENTS

Abstract	iii
Table of contents	
List of Articles/Publications from this thesis	xi
List of Figures	xii
List of Tables	xvii
List of Acronyms	xviii
List of symbols	XX
CHAPTER 1	1
INTRODUCTION	
1.1 The context	1
1.2 The goal	
1.3 The methods and tools	5
1.4 The contributions	6
CHAPTER 2	8
H.264/AVC STANDERED DESCRIPTION	
2.1 Introduction	
2.2 H.264/AVC standard	
2.3 Tools and applications of H.264/AVC	11
2.4 H.264/AVC stream structure	
2.5 H264\AVC prediction modes	16
2.6 Error resilience tool	
2.7 The H.264/AVC encoder stages	
2. V.1 Discrete Cosine Transform DCT	23
2. V.2 Quantization	
2. V.3 In-Loop Deblocking Filter	26
2. V.4 Entropy	
2.8 H.264/AVC Decoder	27
2.9 Concolusion .	29
CHAPTER 3	30
MULTIVIEW VIDEO CODING	
3.1 Introduction	
3.2 Stereoscopic overview	
3.3 Multiview video coding overview	
3.4 MVC camera positions	
3.5 MVC Coding Performance	40

3.5 Conclusion	42
CHAPTER 4	43
ERROR CONCEALMENT ALGORITHMS	
4.1 Introduction	43
4.2 Spatial domain error concealment	
4.2.1 Weighted averaging	
4.3 Temporal error concealment	
4.3.1 Copy-paste	
4.3.2 Boundary Matching Algorithm	
4.3.3 Outer boundary match algorithm (OBMA)	
4.4 Conclusion	
CHAPTER 5	54
PROPOSED ALGORITHMS FOR MVC	
5.1 Introduction	54
5.2 JMVC software overview	
5.3 Executables syntax provided by the JMVC software	
5.3.1 Encoder syntax "H264AVCEncoderLibTestStatic"	
5.3.2 Assembler syntax"MVCBitStreamAssembler"	
5.3.3 Decoder syntax "H264AVCDecoderLibTestStatic"	
5.3.4 PSNR syntax "PSNRStatic"	61
5.4 Scope of Thesis	
5.4.1 Applying an error mask	
5.4.2 Insertion of proposed EC algorithms	
5.5 Previous MVC Error Concealment Algorithms	
5.6 Proposed MVC Error Concealment Algorithms	
5.6.1 Proposed Error Concealment Algorithm for Intra MB	
5.6.1.1 Spatial-Inter View (SIV) algorithm	
5.6.2 Proposed Error Concealment Algorithms	
for Inter MBs	
5.6.3 Proposed Inter MB Error Concealment Algorithm 1	81
5.6.3.1 Macroblock Partitioning	
5.6.3.2 The proposed variable size OBMA algorithm	
5.6.3.3 Weighted Block Motion & Disparity	
Concealment algorithm (WBMDC)	
5.6.3.4 The Overlapped Block Motion	95
Compensation (OBMC) algorithm	
5.6.4 Proposed Inter MB Error Concealment Algorithm 2	97

5.6.4.1 Adaptively selected candidates MBs algorithm	n98
5.6.5 Proposed Inter MB Error Concealment Algorithm	13.102
5.7 Conclusion	104
CHAPTER 6	106
EXPERIMENT RESULTS	
6.1 Introduction	106
6.2 Quality measurements	106
6.2.1 Subjective Quality Measurement	
6.2.2 Objective Quality measurement	
6.2.3 PSNR tool "PSNRStatic" in JMVC	
standard software	
6.3 Multi-Camera System	109
6.4 Camera Parameters	
6.5 Results of Proposed Algorithms	
6.5.1 Results of applying Spatial-Inter View (SIV)	
algorithm	113
6.6 Results of applying Error Concealment <i>Algorithm 1</i>	
6.7 Results of applying Error Concealment <i>Algorithm</i> 2	
6.8 Results of applying Error Concealment <i>Algorithm 3</i>	
6.9 Conclusion	
CHAPTER 7	146
CONCLUSION AND FUTURE WORK	
6.9 Conclusion	146
6.9 Future works	
APPENDIX	149
REFERENCES	

LIST OF ARTICLES/PUBLICATIONS FROM THIS THESIS

- 1. M. Ebian, M. El-Sharkawy, S. El-Ramly," Dynamic Error Concealment Algorithm for Multiview Coding Using Lost MBs Sizes and Adaptively Selected Candidates MBs," in IOSR Journal of Computer Engineering (IOSRJCE), ISBN: 2278-8727 Volume 5, Issue 3 (Sep-Oct. 2012), PP 40-44, India.
- **2.** M. Ebian, M. El-Sharkawy, S. El-Ramly," Enhanced Dynamic Error Concealment Algorithm for Multiview Coding Based on Lost MBs Sizes and Adaptively Selected Candidates MBs,", in Proceedings of the Fourth International Conference on Signal and Image Processing 2012 (ICSIP 2012), Springer 2013,PP 435-443, India.
- **3.** M. Ebian, M. El-Sharkawy, S. El-Ramly," Adaptive Error Concealment Algorithm for Multiview Coding based on lost MBs sizes and using dynamic selection of lower candidates MBs," in IEEE 2012 8th International Computer Engineering Conference (ICENCO), December 2012,PP 26-29,Cairo,Egypt.

LIST OF FIGURES

Figure 1.1	Block diagram simple video coding system2
Figure 2.1	Typical structure of an H.264/AVC video codec10
Figure 2.2	Network abstraction layer unit (NALU) format 13
Figure 2.3	Structure of H.264/AVC video coder
Figure 2.4	Parting the frame into slice in H.264/AVC14
Figure 2.5	Coded slice syntax of H.264/AVC
Figure 2.6	Overview block diagram of H.264/AVC16
Figure 2.7	Illustration of basic coding modes of inter
116010 217	prediction in H.264/AVC
Figure 2.8	Intra prediction from the same frame
Figure 2.9	Variable block size motion-compensated
116010 217	prediction for residual frame
Figure 2.10	Inter perdition from previously coded frames19
	Partitioning of a MB (top) and a sub-MB (bottom) for .19
116010 2.11	motion-compensated prediction.
Figure 2.12	A football frame is divided into multiple20
8	MBs of 16x16,8x8,8x4,4x8 and 4x4 variable sizes
Figure 2.13	Division of a frame into several slice groups21
1 1801 0 1110	using flexible MB ordering
Figure 2.14	Block diagram of hybrid video encoder with22
8	motion estimation
Figure 2.15	(a) Intra prediction: available samples23
8	(b) Intra prediction: spatial extrapolation
Figure 2.16	Block diagram of H.264/AVC video decoder28
Figure 3.1	Example of Multi View video system30
Figure 3.2	Examples of some camera setups
S	for stereoscopic video
Figure 3.3	Stereoscopic video coding predictions
Figure 3.4	Temporal/inter-view prediction34
S	structure for MVC.
Figure 3.5	MVC in case of independnt AVC
Figure 3.6	MVC using inter view predictive coding36
Figure 3.7	Inter-view/temporal prediction structure37
J	based on H.264/ AVC hierarchical B pictures
Figure 3.8	2D camera position to capture the MVC views38

Figure 3.9	Modified coding scheme for 2D camera position.	.38
Figure 3.10	Star camera positions	.39
Figure 3.11	Modified coding scheme for star camera position	.39
	Prediction with first order spatial	
	and temporal neighbor images	
Figure 3.13	Sample coding results for	.42
	several MVC test sequences, according to	
	common test conditions	
Figure 4.1	Weighted averaging	.46
Figure 4.2	Illustration about the internal and	.48
O	the external boundary.	
Figure 4.3	Distortion computation in BMA	.51
Figure 4.4	Distortion computation in OBMA	
Figure 5.1	Prediction structure of the	59
	Multi-view Video Coding	
Figure 5.2	Block diagram of a decoder with proposed	.62
	EC module	
Figure 5.3	Sequence of thesis operations	
Figure 5.4	Corrupted frame using applied error mask	.66
	with ratio 22% loss MB	
Figure 5.5	Main decoder function of MVC reference	67
	software and its calling functions without error	
	concealment algorithms	
Figure 5.6	Main decoder function of MVC reference	.68
	software and its calling functions with error	
	concealment algorithms	
Figure 5.7	Called functions in proposed EC algorithm	.70
F: 50	"MB_EC_ process"	7.1
0	Indices of neighbors MBs according to lost MB	
Figure 5.9		
	Calssification of EC methods used in MVC	
_	Block diagram of SIV algorithm	
rigure 5.12	Inner Boundary Match Algorithm	/9
D: 5 12	using disparity vectors in adjacent views	0.0
0	Variable MB in inter frame	
0	Proposed EC algorithm 1	
rigure 5.15	Four possible Macroblock partitions:	.82
	$16 \times 16, 16 \times 8, 8 \times 16 \text{ and } 8 \times 8$	

Figure 5.16	The search regions of lost MB	84
	in temporal and disparity in reference frames	
Figure 5.17	Candidates motion vector for lost MB	85
	and the four possible EC modes	
Figure 5.18	Temporal and disparity reference frames	87
	for specific frame	
Figure 5.19	Possible positions for candidate MBs	88
_	in the reference frame at 16x16 MB mode	
Figure 5.20	Possible positions for candidate MB in	89
_	reference frames at 8x16 MB mode	
Figure 5.21	Possible positions for candidate MB in	90
	reference frames at 16x8 MB mode	
Figure 5.22	Possible positions for candidate MB in	91
	reference frames at 8x8 MB	
Figure 5.23	Block diagram of WBMDC	93
	algorithm for enhancing lost 16x16 inter MBs	
Figure 5.24	Dividing of initially concealed MB and	95
Figure 5.25	OBMC weighting matrices	97
Figure 5.26	Block diagram of proposed algorithm 2	98
	Candidate MBs in temporal refernece frames	
Figure 5.28	Candidate MB in left disparity refernece frames	100
Figure 5.29	Candidate MBs in right disparity	100
	refernece frames	
Figure 5.30	Location of lost MB and best matched	10١
	MB with respect to adjacent left and right views	
Figure 5.31	Block diagram of proposed algorithm 3	104
	Illustration of 8-camera setup (1D) for MVC	
	Frame sample of each test video sequence	
Figure 6.3	error masks with loss rate	112
	(a) 22%, (b) 15%, (c) 11% and (d) 5%	
Figure 6.4	Visual results after applying WPA algorithm	114
	for concealing lost inter and intra MBs	
Figure 6.5 P	PSNR values for fifteen concealed frames	115
	of ballroom video sequence using different EC	
	algorithm	
Figure 6.6	PSNR values of fifteen ballroom frames	115
	after concealing lost intra MBs only by different	
	algorithms	

Figure 6.7	PSNR values of fifteen concealed frames at119
	22% MB loss rate using proposed algorithm 1 for
	a)ballroom b)exit video sequences
Figure 6.8	Subjective quality comparison for121
	concealed frame 29 of ballroom using proposed
	algorithm 1 at MLR 22%, (a) with error mask
	(b)Concealed with normal OBMA of fixed MB size
	(c)concealed with proposed OBMA
	variable MB size (d) Zoom of (b) & (c)
Figure 6.9	PSNR values of fifteen concealed
	ballroom frames at 15% MB loss rate using
	proposed full algorithm 1ithms
Figure 6.10	PSNR values of fifteen concealed
	ballroom frames at 11% MB loss rate using
	proposed full algorithm 1
Figure 6.11	PSNR values of fifteen concealed
	ballroom frames at 5% MB loss rate using
	proposed full algorithm 1
Figure 6.12	PSNR results for fifteen concealed ballroom124
	frames at different MB loss rates and
E' (12	different algorithms
_	Objective results for the ballroom sequence126
Figure 6.14	Location of lost MB with respect to
E: (15	adjacent left and right views.
Figure 6.15	PSNR values of fifteen concealed ballroom129
	frames at 22% MB loss rate using
Figure 6 16	proposed algorithm 2 Subjective quality comparison for frame 20 121
rigure 0.10	Subjective quality comparison for frame 29131 of ballroom sequence using proposed algorithm 2,
	(a) Corrupted frame (b)Concealing by normal
	OBMA (c)Concealing by full algorithm 1
	(d) Concealing by full algorithm 2
Figure 6 17	PSNR values of fifteen concealed
riguic 0.17	ballroom frames at 15% MB loss rate using
	proposed algorithm 2
Figure 6.18	PSNR values of fifteen concealed
119010 0110	ballroom frames at 11% MB loss rate using
	proposed algorithm 2
Figure 6.19	PSNR values of fifteen concealed
	ballroom frames at 5% MB loss rate using
	proposed algorithm 2