EVALUATION OF INTERNAL ANAL SPHINCTER REPAIR IN PATIENTS WITH FAECAL INCONTINENCE SECONDARY TO ISOLATED INTERNAL ANAL SPHINCTER DEFECTS

Thesis

Submitted for Partial Fulfilment of M.D. Degree in *General Surgery*

By

Sayed Adel Ahmed El-Desouky
Mb.Bch. MS General Surgery
Ain Shams University

Under Supervision of

Professor / Ahmed Abdelaziz Abou-Zeid

Professor of General Surgery
Ain Shams University

Professor / Mohamed Kandeel Abd El-Fattah

Professor of General Surgery
Ain Shams University

Doctor / Hanna Habib Hanna

Lecturer of General Surgery
Ain Shams University

Faculty of Medicine Ain Shams University

2012

First and last, thanks to **ALLAH**

I would like to thank Professor Ahmad Abdelaziz Abou-Zeid who gave me the privilege of working with him and taught me a lot not only in surgery, but also in ways of scientific research and ethics of medical practice.

Also my deepest gratitude is to Professor Mohamed Kandil and to Doctor Hanna Habib who helped me a lot in finishing this work.

I would like also to thank Doctor Mohamad Nada who helped me in doing anal manometry for patients in the present study and taught me its technique. He also helped me in revising this work.

Also my thanks are to Doctor Essam Fakhry for his help in doing endoanal ultrasound for patients in the present study.

Words are not enough to express how do I thank my father, my mother and my wife for their great patience and support for me to complete this work.

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of the work	4
Review of literature	
Anatomy of the anal canal	5
Physiology of continence	15
Faecal incontinence	29
Physiological testing of the anal canal	37
Management of faecal incontinence	67
Patients and methods	75
Results	86
Discussion	102
Summary	109
References	111
Arabic Summary	

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Causative factors of the faecal incontinence with normal pelvic floor	33
Table (2):	Causes of internal sphincter injury in the present study.	86
Table (3):	Site of internal sphincter injury according to preoperative endoanal ultrasonography	88
Table (4):	Wexner's score improvement according to preoperative score	94
Table (5):	Comparison of pre and postoperative anal manometry results.	96
Table (6):	Increased anal canal length according to preoperative anal canal length	101
Table (7):	Resting anal canal pressure improvement according to preoperative resting anal canal pressure.	101
Table (8):	Squeeze anal canal pressure improvement according to preoperative squeeze anal canal pressure.	101

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	Diagram of a coronal section of the rectum, anal canal, and adjacent structures	6
Figure (2):	Anal sphincters are involved in the rectoanal reflex and are responsible for maintenance of fecal continence	7
Figure (3):	Shafik loops	9
Figure (4):	Schematic representation to demonstrate that the anterior anal sphincter is shorter in the female	10
Figure (5):	Anatomy of the pudendal nerve and its branches and possible sites of entrapment (2-3)	13
Figure (6):	Sagittal view of the anorectum at rest (Panl A) and during straining to defecate (Panel B)	20
Figure (7):	A 4-channel manometric probe used for anorectal manometry	39
Figure (8):	Normal anorectal manometry pattern is characterized by increased intrarectal pressure associated with relaxation of the anal sphincter during attempted defecation	41
Figure (9):	Endoprobe in its component parts	48
Figure (10):	Schematic representation of the anal canal with the probe in situ	49
Figure (11):	Normal anatomy by endoanal ultrasound	50
Figure (12):	EUS image at upper part of the anal canal	52
Figure (13):	Image at middle part of the anal canal	53
Figure (14):	Image at lower part of the anal canal	54
Figure (15):	Sonographic image at Level 1 of Figure (10) demonstrating the puborectalis muscle	55

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (16):	2 images of defects of the internal anal sphincter.	57
Figure (17):	Defect of the anterior external anal sphincter	58
Figure (18):	Combined internal and external sphincter injury following obstetric trauma	59
Figure (19):	Defect in the external sphincter	61
Figure (20):	Anal stenosis with internal sphincter hypertrophy	62
Figure (21):	Recording sites (a and b) of electromyographic activities and of motor responses to root (1), nerve (2) or reflex (3) stimulations	65
Figure (22):	An algorithmic approach for the evaluation and treatment of faecal incontinence	74
Figure (23):	Perianal injection of adrenaline	78
Figure (24):	The 2 free ends of healthy internal sphincter	79
Figure (25):	Double breasting of both ends of the internal sphincter.	81
Figure (26):	Repaired internal sphincter with sutures taken at different levels.	82
Figure (27):	Closure of the wound with the central part left open for drainage.	83
Figure (28):	Double anterior and posterior IAS injury	88
Figure (29):	Lateral IAS defect from5 to 11 O'clock	89
Figure (30):	IAS defect from5 to 9 O'clock	89
Figure (31):	Post IAS repair	95

LIST OF GRAPHS

Graph. No.	Title	Page No.
Graph (1): Pre and post	operative Wexner's score	93
Graph (2): Pre and post	operative Wexner's score	94
Graph (3): Pre and post	operative anal canal length	97
Graph (4): Pre and post	operative anal canal length	98
Graph (5): Pre and post	operative resting anal canal pressu	re99
Graph (6): Pre and post	operative squeeze anal canal press	ure100

LIST OF ABBREVIATIONS

Abbrev.	Complete term
EAS:	External anal sphincter
EAUS:	Endo anal ultrasound
EMG:	Electromyography
EUS:	Endoanal ultrasound
FDD:	Functional defecatory disorders
FI:	Faecal incontinence
IAS:	Internal anal sphincter
MR:	Magnetic resonance
MRI:	Magnetic resonance imaging
OD:	Obstructed defecation
PFD:	Pelvic floor descent
PFM:	Pelvic floor muscles
PNTML:	Pudendal nerve terminal motor latency
RAIR:	Recto-anal inhibitory reflex
SARs:	Sacral anal reflexes
SEPs:	Somatosensory evoked potentials
SSR:	Sympathetic skin response
US:	Ultrasonography

INTRODUCTION

Faecal incontinence is a devastating disability and distressing condition. It is responsible for social embarrassment of such a degree that it frequently induces isolation as severe as in the case of paraplegia (*Kouraklis et al., 2004*). The prevalence of faecal incontinence in general community people is 2.2-6.9%, but in nursing homes residents, the prevalence increases up to 45-47% (*Whitehead, 2005*)

Faecal continence is multifactorial and depends on anal sphincters to generate high anal pressure that is greater than rectal pressure, when contents are present (*Sapsford*, 2001). Currently the internal anal sphincter (IAS) is thought to be responsible for 75% of resting pressure of the anal sphincter system. The smooth muscle of the internal sphincter is well suited to its job of generating a constant tension over long periods of time (*Peschers et al.*, 2007). Thus, the internal anal sphincter is the primary barrier to leakage of faeces between acts of defecation (*Wood*, 2003).

Internal anal sphincter dysfunction, which can be the result of physical or functional impairment, may lead to anorectal incontinence. This suggests that IAS plays a significant role in preserving continence (gases and loose

stools). Patients with poor IAS function and low resting pressure commonly experience passive leakage of stool and the need to wear a pad. Partial or total internal sphincterotomy is accompanied by an 8-40% postoperative risk of soiling or incontinence concerning gases (*Andromanakos et al.*, 2006).

The most common injury to the internal anal sphincter is an obstetrical tear, but decreases in internal anal sphincter tone may also occur for unknown reasons and may compromise continence (*Whitehead*, 2005). Sphincter disruption may also result from surgery for haemorrhoids, fistula, fissures, or from perineal trauma. Anal dilation or lateral sphincterotomy may cause permanent incontinence from fragmentation of the sphincter (*Troche et al.*, 2007).

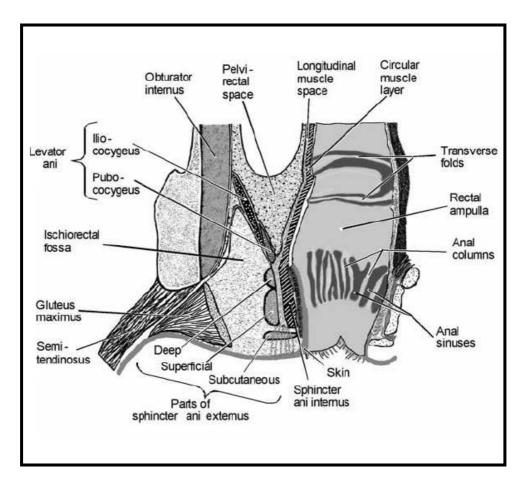
Repair of the external sphincter by overlap sphincteroplasty has established its place in management of faecal incontinence, with good to excellent results in 70 to 80 percent of patients (*Abou-Zeid*, 2000).

On the other hand, the results of the repair to the internal anal sphincter alone have not been extensively evaluated (*Leroi et al.*, 1997). Direct repair of the IAS has been seldom advocated presumably because the muscle ends retract and the IAS has a poor reputation for holding sutures (*Morgan et al.*, 1997).

Few studies reported on the results of management of internal sphincter defects with silicon injection. The results

were not encouraging. On the other hand, the early results of direct internal anal sphincter repair were encouraging. Unfortunately long term results were not so good. Over the last years we were improving our technique of internal sphincter repair to get better results. Unpublished data showed acceptable improvement on long term in 70% of patients. Hence, longer follow-up and more patients need to be studied to verify or refuse such preliminary results (*Abou-Zeid*, 2000).

AIM OF THE WORK


The aim of the present thesis is to evaluate the results of internal anal sphincter repair surgery in improving the symptom of faecal incontinence in patients with isolated internal anal sphincter defects and to correlate anal sphincter morphology as detected by endoanal ultrasonography, and anal sphincter function as detected by anorectal manometry with patients' symptoms and outcome after surgery.

Chapter 1

ANATOMY OF THE ANAL CANAL

The anal canal

The anal canal is an anteroposterior slit, with its lateral walls in close contact. The proximal 10 mm of the anal canal is lined by columnar, rectal-type mucosa. The next 15 mm (which includes the valves) is lined by stratified, or a modified columnar, epithelium. Distal to that is about 10 mm of thick, non hairy, stratified epithelium (i.e., the pectin). The most distal 5–10 mm is lined by hairy skin. The anal canal is surrounded by the internal and external anal sphincters. The internal sphincter is a thickened extension of the circular smooth muscle layer surrounding the rectum that contains discrete muscle bundles separated by large septa (*Bharucha*, 2007) Figure (1).

Figure (1): Diagram of a coronal section of the rectum, anal canal, and adjacent structures. The pelvic barrier includes the anal sphincters and the pelvic floor muscles (*Bharucha*, 2007).

Anal sphincters

Anal sphincters are rings of muscle surrounding the distal rectum and anal canal. There are two anal sphincters in this region, the internal anal sphincter and the external anal sphincter. Either sphincter, when contracted, assists in closing the anal canal to the passage of faeces and flatus. Figure (2) (*Wood*, 2003).