### Ain Shams University Faculty of Medicine Pediatric Department



### Comparison of Three Prognostic Scoring Systems (PRISM, PIMII and PELOD) in Prediction of Mortality of Children Admitted to the Pediatric Intensive Care Unit in Children Hospital; Ain Shams University

#### **Thesis**

Submitted to Faculty of Medicine, Ain Shams University
For Partial Fulfilment of the Requirements for Master Degree
In Pediatric

### By

Fatma Mohamed Elsayed M.B.,B.Ch.

#### **Supervisors**

# Prof. Dr. Tarek Ahmed Abd El-Gawad

Professor of Pediatrics Faculty of Medicine Ain Shams University

#### Prof. Dr. Hanan Mohamed Ibrahim

Professor of Pediatrics Faculty of Medicine Ain Shams University

### Dr.

### Mervat Gamal Eldin Mansour

Assistant Professor of Pediatrics Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2013



در اسة مقارنة بين دقة كلا من مقياس احتمالية الوفاه للأطفال، ومقياس مؤشر الوفاه للأطفال رقم 2، ومقياس الاختلال اللوجستي الوظيفي للأعضاء للأطفال في توقع الوفاه للأطفال المدخلين لوحدة العناية المركزة بمستشفى الاطفال، جامعة عين شمس رسالة مقدمة إيفاء جزئياً لشرط الحصول على درجة الماجستير في الأمراض طب الاطفال

من الطبيبة

الطبيبة/ فاطمة محمد السيد

(بكالوريوس الطب والجراحة) كلية الطب - جامعة عين شمس

المشر فون الأستاذ الدكتور طارق احمد عبد الجواد

أستاذ طب الأطفال كلية الطب - جامعة عين شمس

الأستاذة الدكتورة حنان محمد إبرأهيم

أستاذ طب الأطفال كلية الطب - جامعة عين شمس

الدكتورة ميرفت جمال الدين منصور

أستاذ مساعد طب الأطفال كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس 2013



سورة البقرة الآية: ٣٢



First and before all, I thank **ALLAH**. I thank him for his great mercy, generous blesses, and for his continuous gifts.

I wish to express my deepest gratitude to **Prof. Dr. Tarek Ahmed Abd El Gawad.** Professor of Pediatrics, Faculty of

Medicine Ain Shams University. His instructive guidance,
continuous support, enthusiastic encouragement and scientific
supervision and correction were beyond words can convey.

I am also deeply grateful to. **Dr. Hanan Mohamed Ibrahim.** Professor of Pediatrics, Faculty of Medicine Ain Shams
University. Her constant help, precious advice, constructive
criticism and excellent supervision, has enabled this work to reach
its final form.

Endless thanks goes to **Dr. Mervat Gamal-Eldin Mansour.** Assistant Professor of Pediatrics Faculty of Medicine
Ain Shams University. I will always be grateful for the time and
tremendous effort she has put into this study.

Special thanks to my family for their prayers, support and continuous encouragement.

Fatma Mohamed El-Sayed

# **List of Abbreviations**

| ACEP   | American college of emergency       |
|--------|-------------------------------------|
|        | physicians                          |
| ACTH   | Adrenocorticotropic hormone         |
| ADH    | Anti-diuretic hormone               |
| AIDS   | Acquired immune deficiency          |
|        | syndrome                            |
| AMA    | American Medical Association        |
| AOA    | American Osteopathic Association    |
| APACHE | Acute physiology and chronic health |
|        | evaluation                          |
| ARDS   | Acute respiratory distress syndrome |
| ARF    | Acute respiratory failure           |
| ARF    | Acute renal failure                 |
| ASMR   | Age-specific mortality rate         |
| ATN    | Acute tubular necrosis              |
| BIS    | Bispectral index                    |
| BMT    | Bone marrow transplantation         |
| BSIs   | Blood stream infections             |
| CAUTI  | Catheter-associated urinary tract   |
| CDC    | Centers for Disease Control and     |
|        | Prevention                          |
| CFU    | Colony-forming units                |
| CHD    | Congenital heart disease            |
| CHF    | Congestive heart failure            |
| CMM    | Cancer Mortality Model              |
| CMP    | Cardiomyopathy                      |
| CNS    | Central nervous system              |
| CO2    | Carbon Dioxide                      |
| CONS   | Coaggulase negative staff           |
| СР     | Child-Pugh                          |

| CPA   | Cardiopulmonary arrest               |
|-------|--------------------------------------|
| CPAP  | Continuous Positive Airway Pressure  |
| CPR   | Cardiopulmonary resuscitation        |
| CPR   | Cardiopulmonary resuscitation        |
| CRIB  | Clinical Risk Index for Babies score |
| CSEP  | Clinically suspected sepsis          |
| CSF   | Cerebrospinal fluid.                 |
| CVC   | Central venous catheter              |
|       |                                      |
| CVC   | Central venous pressure              |
| CVS   | Cardiovascular                       |
| DIC   | Disseminated intra-vascular          |
| DIVA  | coagulation                          |
| DKA   | Diabetic keto-acidosis               |
| DMD   | Duchenne muscular dystrophy          |
| DNR   | do not resuscitate                   |
| DOA   | Dead on arrival                      |
| DORA  | Dynamic Objective Risk Assessment    |
| DRGs  | Diagnostic Related Groupings         |
| DSN   | Dialysis Surveillance Network        |
| ECG   | Electrocardiogram                    |
| ED    | Emergency department                 |
| EEG   | Electroencephalograms                |
| EEGs  | Electro encephalogram                |
| EENT  | Eye, ear, nose, and throat           |
| EM    | Emergency Medicine                   |
| EMS   | Emergency medical services           |
| ENT   | Ear, Nose, & Throat                  |
| EPs   | Emergency physicians                 |
| ER    | Emergency room                       |
| EtCO2 | End-tidal CO2                        |
| FiO2  | Fraction of inspired Oxygen          |
| GCS   | Glasgow Coma Scale                   |

| GCS    | Glasgow Coma Scale                  |
|--------|-------------------------------------|
| GI     | Gastrointestinal                    |
| HAI    | Health care associated infection    |
| HR     | Heart Rate                          |
| ICP    | Intracranial pressure               |
| ICU    | Intensive Care Unit                 |
| IOM    | Institute of medicine               |
| IU     | International Unit                  |
| LOS    | The length of stay                  |
| LRI    | Lower respiratory tract infections  |
| MASH   | Mobile_Army_Surgical_Hospital       |
|        | units                               |
| MBP    | Mean Blood Pressure                 |
| mEq/L  | Milli Equivalent per Liter          |
| mmHg   | Milligram per deciliter             |
| mmol/L | Millimole per Liter                 |
| MODS   | Multiple organ dysfunction syndrome |
| MPM    | Mortality Probability Models        |
| MPM II | Mortality prediction model          |
| MRSA   | Methicillin-resistant S aureus      |
|        | (MRSA)                              |
| NaSH   | National Surveillance System for    |
|        | Healthcare Workers                  |
| NHSN   | National Healthcare Safety Network  |
| NICU   | Neonatal ICU                        |
| NMD    | Neuromuscular disorders             |
| NNIS   | National Nosocomial Infection       |
|        | Surveillance System                 |
| P      | Probability value                   |
| PaCO2  | Partial Pressure of Carbon Dioxide  |
|        | Tension                             |
| PaO2   | Partial Oxygen Tension In Arterial  |

|             | Blood                                                     |  |
|-------------|-----------------------------------------------------------|--|
| PELOD       | PEdiatric Logistic Organ Dysfunction                      |  |
| PEMOD       | PEdiatric Multiple Organ Dysfunction                      |  |
| PICANET     | Pediatric Intensive Care Audit                            |  |
| ICANLI      | network                                                   |  |
| PICU        | Pediatric intensive care unit                             |  |
| PIM         | The Pediatric Index of Mortality                          |  |
| PIMII       | The Pediatric Index of Mortality II                       |  |
| PNE         | Pneumonia                                                 |  |
|             |                                                           |  |
| PO2         | Partial pressure of oxygen                                |  |
| PPS         | Prospective Payment System                                |  |
| PRISM       | Pediatric Risk of Mortality                               |  |
| PSI         | Physiologic Stability Index                               |  |
| PT          | Prothrombin Time                                          |  |
| PTS         | Paediatric Trauma score                                   |  |
| PTT         | Partial Thromboplastin Time                               |  |
| PVC         | Polyvinyl Chloride                                        |  |
| RIFLE       | Risk, injury, failure, loss and end-                      |  |
| DOG         | stage kidney classification                               |  |
| ROC         | Receiver Operating Characteristic                         |  |
| DD          | Curve  Descriptory Data                                   |  |
| RR          | Respiratory Rate                                          |  |
| S. aureus   | Staphylococcus aureus                                     |  |
| SAPS<br>SBP | Simplified acute physiology score Systolic Blood Pressure |  |
| SENIC       | Study of the Efficacy of Nosocomial                       |  |
| SENIC       | Infection Control                                         |  |
| SIADH       | Syndrome of inappropriate secretion                       |  |
| JINDII      | of antidiuretic hormone                                   |  |
| SIRS        | Systemic inflammatory response                            |  |
|             | syndrome                                                  |  |
| SLOSR       | Standardized length of stay ratio                         |  |
| SMA         | Spinal muscular atrophy                                   |  |
| SNAP        | Score for Neonatal Acute Physiology                       |  |

| SOFA   | Sepsis-related Organ Failure     |
|--------|----------------------------------|
|        | Assessment                       |
| SOI    | Severity of illness              |
| SSI    | Surgical site infections         |
| SST    | Skin and soft tissue             |
| TcCO2  | Transcutaneous carbon dioxide    |
|        | tension                          |
| TcO2   | Transcutaneous oxygen tension    |
| TISS   | Therapeutic intervention scoring |
|        | system                           |
| UNICEF | United Nations Children's Fund   |
| US     | Ultrasound                       |
| UTI    | Urinary tract infection          |
| VAP    | Ventilator-associated pneumonia  |
| WHO    | World health organization        |
| μmol/L | Micro mole per liter             |

# **List of Figures**

| Figure               | Title                                                                            | Page |
|----------------------|----------------------------------------------------------------------------------|------|
| Review of Literature |                                                                                  |      |
| Figure (1):          | Quality and efficiency assessments using SMRs and SLOSRs                         | 45   |
|                      | Results                                                                          |      |
| Figure (2):          | Distribution of gender in the specemin.                                          | 79   |
| Figure (3):          | Outcome of patients in the study.                                                | 81   |
| Figure (4):          | System affection among the population of the study.                              | 81   |
| Figure (5):          | Distribution of age in the specimen.                                             | 83   |
| Figure (6):          | Distribution of age in the specimen.                                             | 84   |
| Figure (7):          | Distribution of the length of stay groups in the specimen                        | 88   |
| Figure (8):          | Percentage of cases survived and died in relation to length of stay groups.      | 88   |
| Figure (9):          | Superposition of three receiver operating characteristic curves (ROC).           | 105  |
| Figure (10):         | Scatter plot displaying correlation between PIM and PRISM predicted mortality.   | 109  |
| Figure (11):         | Scatter plot displaying correlation between PIM and PELOD predicted mortality.   | 110  |
| Figure (12):         | Scatter plot displaying correlation between PRISM and PELOD predicted mortality. | 11   |

## **List of Tables**

| Table                | Title                                                                                         | Page |
|----------------------|-----------------------------------------------------------------------------------------------|------|
| Review of Literature |                                                                                               |      |
| <b>Table (1):</b>    | Major categories and examples of outcome prediction models.                                   | 36   |
| <b>Table (2):</b>    | PRISM score.                                                                                  | 58   |
| <b>Table (3):</b>    | PIM2 score.                                                                                   | 64   |
| <b>Table (4):</b>    | PELOD score.                                                                                  | 70   |
|                      | Results                                                                                       |      |
| <b>Table (5):</b>    | Demographic data of the patients of the study.                                                | 78   |
| Table (6):           | Clinical data and admission criteria of the patients of the study.                            | 80   |
| <b>Table (7):</b>    | System affection among the population of the study.                                           | 81   |
| <b>Table (8):</b>    | Scores performance in relation to age.                                                        | 82   |
| <b>Table (9):</b>    | Relation of age to actual outcome.                                                            | 83   |
| <b>Table (10):</b>   | Scores performance in relation to sex.                                                        | 85   |
| <b>Table (11):</b>   | Relation of Sex to actual outcome.                                                            | 85   |
| Table (12):          | Relation of PRISM, PIM2 and PELOD and length of hospital stay.                                | 87   |
| Table (13):          | Relation of Hospital Stay Days to actual outcome.                                             | 87   |
| Table (14):          | Relation of demographic factors to actual outcome.                                            | 89   |
| Table (15):          | Relation of other Clinical characteristics and admission criteria to actual outcome.          | 90   |
| Table (16):          | PIM, PRISM and PELOD score and predicted mortality performance in relation to actual outcome. | 91   |
| Table (17):          | PELOD performance in relation to actual outcome.                                              | 92   |

|                    |                                                    | 0.0 |
|--------------------|----------------------------------------------------|-----|
| Table (18):        | Performance of scores in relation to respiratory   | 93  |
|                    | system affection.                                  |     |
| Table (19):        | Relation of respiratory system affection to actual | 93  |
|                    | outcome.                                           |     |
|                    | Performance of scores in relation to               | 94  |
| Table (20):        | cardiovascular system affection.                   |     |
|                    | Relation of cardiovascular system affection to     | 94  |
| Table (21):        | actual outcome.                                    | 71  |
|                    | actual outcome.                                    | 95  |
| Table (22):        | Performance of scores in relation to CNS           | 95  |
| Table (22).        | affection.                                         |     |
| T-1-1- (22)        | Deletion of CNS effection to actual outcome        | 05  |
| Table (23):        | Relation of CNS affection to actual outcome.       | 95  |
| Table (24):        | Performance of scores in relation to metabolic     | 96  |
| Table (24).        | system affection.                                  |     |
| m.1.1. (25)        | Relation of metabolic system affection to actual   | 96  |
| Table (25):        | outcome.                                           |     |
|                    | Performance of scores in relation to hematologic   | 97  |
| <b>Table (26):</b> | system affection.                                  |     |
|                    | Relation of hematologic system affection to        | 97  |
| Table (27):        |                                                    | 97  |
|                    | actual outcome.                                    |     |
| Table (28):        | Performance of scores in relation to               | 98  |
| Table (20).        | gastrointestinal system affection.                 |     |
| T-1-1- (20)        | Relation of gastrointestinal system affection to   | 98  |
| Table (29):        | actual outcome.                                    |     |
| Table (30):        | Performance of scores in relation to renal system  | 99  |
|                    | affection.                                         |     |
|                    | WILL WILL WILL WILL WILL WILL WILL WILL            |     |

| Table (31):        | Relation of renal system affection to actual   | 99  |
|--------------------|------------------------------------------------|-----|
|                    | outcome.                                       |     |
| <b>Table (32):</b> | Actual outcome in relation to main diagnosis.  | 100 |
| Table (22).        | PRISM predicted mortality percentage in        | 101 |
| Table (33):        | relation to main diagnosis.                    |     |
| Table (34):        | PIM predicted mortality percentage in relation | 102 |
| 1 able (34):       | to main diagnosis.                             |     |
| Table (35):        | PELOD predicted mortality percentage in        | 103 |
| Table (33).        | relation to main diagnosis.                    |     |
| Table (26)         | Area under the curve for PRISM, PIM2 and       | 105 |
| Table (36):        | PELOD.                                         |     |
| Table (27)         | Calibration of models in five intervals of     | 107 |
| Table (37):        | mortality risk.                                |     |
| Table (38):        | Correlation between PIM and PRISM.             | 109 |
| Table (39):        | Correlation between PIM and PELOD.             | 110 |
| Table (40):        | Correlation between PRISM and PELOD.           | 111 |
| Table (41):        | Comparison between PRISM, PIM 2 and            | 112 |
|                    | PELOD as regard performance of the models.     |     |

# **List f Contents**

| Subject                                                               | Page |
|-----------------------------------------------------------------------|------|
| List of Abbreviations                                                 | I    |
| List of Tables                                                        | VI   |
| List of Figures                                                       | IX   |
| Introduction                                                          | 1    |
| Aim of the Work                                                       | 4    |
| Review of Literature                                                  |      |
| > Chapter (I): Indications of admission to PICU                       | 5    |
| > Chapter (II): Scoring systems                                       | 25   |
| > Chapter (III): The Pediatric risk of mortality (PRISM) score        | 55   |
| > Chapter (IV): The Pediatric index of mortality (PIM2) score         | 61   |
| > Chapter (V): The pediatric logistic organ dysfunction (PELOD) score | 67   |
| Patients and Methods                                                  | 73   |
| Results                                                               | 78   |
| Discussion                                                            | 113  |
| Summary and Conclusion                                                | 136  |
| Recommendations                                                       | 141  |
| References                                                            | 142  |
| Arabic Summary                                                        |      |

#### Introduction

Critical care has developed over the past 30 years with little rigorous scientific evidence about what is, or is not, clinically effective. Pediatric intensive care unit (PICU) is an important component of tertiary pediatric care services. PICUs aim at promoting qualified care for critically ill children. Following the rapid advances in medical therapy and critical care technology over past thirty years, coupled with the spiraling cost of medical care, outcome analysis including mortality risk prediction has become a challenge for the modern day intensivists (*Fiser*, 1996).

Critically ill patients are typically characterized by disturbances of body homeostasis. Both in adults and children, these disturbances can be estimated by measuring how much apart one or many physiologic variables are from the normal range. Composite scores can be constructed with such variables. Many types of scores have been developed. These scores consider some co-morbidities and physiologic disturbances at entry into PICU. Prognostic scores were developed to better describe the severity of illness and maximize prediction of the