MOLECULAR CHARACTERIZATION OF ISOPRENE SYNTHASE GENE FROM BACTERIA

By

LAMIS MUHAMMAD HOSSAM EL-DEEN HUSSEIN GOMAA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2007

THESIS Submitted in

MASTER OF SCIENCE

In

Agricultural Sciences (Genetics)

Department of Genetics
Faculty of Agriculture
Cairo University
EGYPT

2017

APPROVAL SHEET

MOLECULAR CHARACTERIZATION OF ISOPRENE SYNTHASE GENE FROM BACTERIA

M.Sc. Thesis
In
Agric. Sci. (Genetics)

By

LAMIS MUHAMMAD HOSSAM EL-DEEN HUSSEIN GOMAA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2007

APPROVAL COMMITEE

OR. GIHAN MOHAMED HOSNY HUSSEIN	
Head Research of Plant Genetic Transformation, AGERI, ARC	
OR. ABDELHADI ABDALLAH ABDELHADI	
Associate Professor of Genetics, Fac. Agric., Cairo University	
Dr. NAGLAA ABDELMONEIM ABDALLAH	
Professor of Genetics, Fac. Agric., Cairo University	

Date: 23 /5 / 2017

SUPERVISION SHEET

MOLECULAR CHARACTERIZATION OF ISOPRENE SYNTHASE GENE FROM BACTERIA

M.Sc. Thesis
In
Agric. Sci. (Genetics)

By

LAMIS MUHAMMAD HOSSAM EL-DEEN HUSSEIN GOMAA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2007

SUPERVISION COMMITTEE

Dr. NAGLAA ABDALMONEIM ABDALLAH Professor of Genetics, Fac. Agric., Cairo University
Dr. HAGGAG SALAH ZEIN Associate Professor of Genetics, Fac. Agric., Cairo University
DR. NAHED ABDEL GHAFFAR ABDEL AZIZ

Head Research of Microbial Molecular Biology, AGERI, ARC

Name of Candidate: Lamis Muhammad Hossam El-Deen Hussein Gomaa

Degree: M.Sc.

Title of Thesis: Molecular characterization of isoprene synthase gene from bacteria

Supervisors: Dr. Naglaa A. Abdallah Dr. Haggag Salah Zein

Dr. Nahed Abdel Ghaffar Abdel Aziz

Department: Genetics Approval: 23 / 5 / 2017

ABSTRACT

Isoprene represents a key building block for the production of valuable materials such as latex, synthetic rubber, pharmaceuticals and serves as basis for advanced biofuels. In this study, the isoprene produced by Bacillus subtilis ATCC 6633 and Bacillus stearothermophilus 12980 ATCC was quantitatively analysed using gas chromatography mass spectrometry (GC-MS). B. stearothermophilus 12980 ATCC produced 1.169 mg/ml isoprene at 55°C for 18h incubation and B. subtilis 6633 ATCC produced 1.071 mg/ml isoprene at 45°C for 18h incubation. Furthermore, heterologous expression of the Kudzu isoprene synthase (klspS) gene into B. subtilis DSM 402, B. licheniformis DSM 13 using the pHT01 vector and E. coli BL21 (DE3) using the pET28b-C-term to be used as a bench mark. Development of the electroporation protocol for successful tranformations into Bacillus spp. Isoprene production was analyzed using Gas Chromatography Flame Ionization Detector (GC-FID). The highest isoprene production was observed by recombinant B. subtilis harboring the pHT01-kIspS plasmid in which it produced 1275µg/l/OD isoprene, that is three-fold higher than the non recombinant Bacillus subtilis (WT) which produced 370 µg/l/OD isoprene, when both incubated at 30°C for 48 h induced with 0.1 mM IPTG. Additionally, recombinant B. subtilis produced five fold higher than the recombinant B. licheniformis. Multiple sequnece alignment showed difference in the codon usage analysis between the two Bacillus spp. Recombinant B. subtilis is considered as a versatile host for heterologous production of isoprene.

Keywords Isoprene, Isoprene synthase, *Bacillus stearothermophilus, Bacillus subtilis, Bacillus licheniformis*

DEDICATION

I dedicate my thesis to whom my heartfelt thanks, to my beloved Dad M. Houssam El-Deen who passed away and supported me through my long journey and to my Mum Azza who have been always my source of inspiration and backbone. Special thanks to my dear brother Lo'ai and my lovely sister Lobna who have never left my side. Sincere appreciation to our new family members my brother Ahmed Alaa and my sister Lobna Fayed for their encouragement and moral support. Special thanks to to my Deutsch Mum Elisabeth Ebenbeck for being kind and helpful during my stay with her in Straubing, Germany.

ACKNOWLEDGEMENT

Special thanks and sincere appreciation to **Dr. Naglaa A. Abdallah**, Professor of Genetics, Fac. of Agri. Cairo Uni., for her assistance, guidance and support throughout my postgraduate studies, writing of the thesis and research paper publication.

Sincere appreciation to **Dr. Haggag S. Zein**, Associate Professor of Genetics, Fac. of Agri. Cairo Uni., for his supervision, and his great efforts in data analysis, writing of the thesis and research publication.

Also, I would like to thank to **Dr. Nahed Abdel ghaffar**, head researcher at the microbial molecular biology lab, AGERI, ARC for her supervision, encouragement and support along the period of this work.

Additionally, I would like to express my gratitude to the Science and technology development fund - short term fellowships (STDF-STF) for their financial support of my proposal entitled "Microbial isoprene production project no.6672" and awarding me a short term fellowship for 4 months to carry out my Master thesis at the Chair of Chemistry and Biogenic Resources, Technical University of Munich, Straubing, Germany.

I would like to thank all the members of the Chair of Chemistry and Biogenic Resources, TUM for being helpful. Special thanks to **Dr. Volker Sieber** and **Dr.-Ing.**Jochen Schmid for their contribution to the experimental design and providing me all the materials, supplies and facilities for this work to be done. Special thanks to Michael Loscar for his supervision, planning and direction along the period of this work.

Many thanks must go to **Dr. Ali samy Abdelaal** Department of Genetics, Faculty of Agriculture, Damietta University for his great efforts in the GC-FID data analysis and his participation in the period of writing and revising the thesis.

Sincere appreciation to **Dr. Abdelhadi A. Abdallah**, Associate Professor of Genetics, Fac. of Agri., Cairo Uni., for his great efforts and support during our research article publication process.

I would like to thank **Dr. Abdallah Soubhy** and **Rasha Abdel-majeed** Department of Microbilogy, Fac. Of Agri. Cairo Uni. for learning me on Endnote program.

I am grateful to all of the Genetics Department staff, Fac. Agri. Cairo Uni. I would like also to express my gratitude to all of the AGERI staff. Special thanks for the microbial molecular biology lab technician Rabab Saeed for her continuous support. I would like to thank also my colleges Hazem Hassan and Mustafa Fathy for helping me to prepare my samples before my travel to Germany. Sincere appreciation to my colleges Omnia Taha and M. Zamzam for their great efforts and support during the period of writing the thesis and research paper. I would like to thank Miss Ghada at Crystal library for helping me in adjusting the thesis format.

CONTENTS

1	EW OF LITERATURE
1.	Isoprene
2.	World consumption of high purity isoprene
3.	Commercial routes for isoprene production
4.	Isoprene production pathways
5.	Production of isoprene from plants
6.	Microbes producing isoprene
7.	Engineering isoprene production in microorganisms
8.	Isoprene production assays
M	ATERIALS AND METHODS
	Isoprene standard
2.	Bacterial strains
3.	Plasmids
4.	Quantitative analysis of Isoprene produced by <i>Bacillus</i> spp. using Gas Chromatography Flame Ionization Detector (GC-MS)
_	Retention times, gas chromatography and mass spectrum
5.	parameters
	Construction of recombinant pET28b-C-term plasmic
	Construction of recombinant pET28b-C-term plasmic with the kIspS for heterologous expression in E. coli
6. 7.	Construction of recombinant pET28b-C-term plasmid with the kIspS for heterologous expression in E. coli
6.7.8.	Construction of recombinant pET28b-C-term plasmid with the kIspS for heterologous expression in E. coli
6.7.8.9.	Construction of recombinant pET28b-C-term plasmic with the kIspS for heterologous expression in E. coli

12	.Construction of recombinant pHT01 plasmid with the kIspS for heterologous expression into the two Bacillus spp
	Transformation of the recombinant plasmid pHT01-kIspS into the two Bacillus spp. using electroporation protocol. Screening of the recombinant Bacillus spp harboring the pHT01-kIspS plasmid
15	.Isoprene production assays using Gas Chromatography- Flame Ionization Detector (GC-FID)
	.Codon usage analysis .Amino acid prediction
RI	ESULTS
1.	Quantitative analysis of the produced isoprene by Bacillus subtilis and Bacillus stearothermophilus
2.	Construction of recombinant plasmid pET28b-kIspS-C-term
3.	Construction of recombinant plasmid pET-28b-kIspS-N-term
4.	SDS-PAGE analysis
	Bacillus subtilis DSM 402 antibiogram
6.	Construction of recombinant plasmid pHT01-kIspS
7.	Isoprene production by different Bacterial strains
8.	Influence of different IPTG concentrations on isoprene production
9. 7.	The effect of 0.3M NaCl on isoprene production