

Ain Shams University Faculty of Medicine Dept. of Aesthesia, Intensive Care, and Pain Management.

New Anticoagulants In Intensive Care Unit

An ESSAY SUBMITTED FOR
Partial Fulfillment of Master Degree in
INTENSIVE CARE

PRESENTED BY

Tharwat Mohamed Sayed Ahmed

M.B. B.Ch.

Faculty of Medicine Zagazig University

UNDER SUPERVISION OF

Prof. Dr. Bassel Mohamed Esam Nour El Din

Professor Of Anesthesia & Intensive Care Faculty Of Medicine, Ain Shams University

Dr. Ihab Hamed Abdel Salam

Assistant Professor Of Anesthesia & Intensive Care Faculty Of Medicine, Ain Shams University

Dr. Raham Hasan Mostafa

Lecturer Of Anesthesia & Intensive Care Faculty Of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2013

جامعة عين شمس كلية الطب قسم التخدير والرعايق المركزة

الجديد في مضادات التجلط في وحدة الرعاية المركزة

رسالة توطئة للحصول على درجة الماجيستير في الرعاية المركزة

مقدمة من الطبيب/ ثروت محمد سيد أحمد بكالوريوس الطب و الجراحة كلية الطب جامعة الزقازيق

تمت إشراف

الأستاذ الدكتور/ باسل محمد عصام نورالدين أستاذ التخدير و العناية المركزة كلية الطب جامعة عين شمس

الدكتور/ إيهاب حامد عبد السلام أستاذ مساعد التخدير و العناية المركزة كلية الطب جامعة عين شمس

الدكتورة / رهام حسن مصطفي مدرس التخدير و العناية المركزة كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس 2013

List of tables

table(1): Protamine dose in reversal of Heparin and LMWH	47
table (2): Optimal Therapeutic INR Goals by Indication and Duration	
of Anticoagulation	81
table (3): Initial Warfarin Dosing Guidelines	82
table (4): Maintenance Warfarin Dosing Guidelines	83
table (5): Guidelines on Vitamin K1 Administration for Reversal of Warfarin	84
table (6): Guideline for managing the anticoagulation therapy during the	
perioperative period	88
table (7): Anticoagulant reversal agent	96
table (8): Reversal of warfarin	96
table (9): Reversal of low-molecular-weight heparins and Fonadparinux	97
table (10): Protamine dose for reversal of heparin and LMWH	97

List of figures

Figure (1): Basic representation of the elements of hemostasis 5
Figure (2): A stylized view of endothelial functions related to procoagulation
and anticoagulation6
Figure (3): Coagulation pathway15
Figure (4): A representation of the original extrinsic pathway proposed in
1905 16
Figure (5): A model of the classic extrinsic and intrinsic coagulation
pathways19
Figure (6): A newer model of the coagulation pathway21
Figure (7): Fibrinogen23
Figure (8): Algorithm illustrating the fundamental operation of the
coagulation pathway26
Figure (9): Mechanism of action of anticoagulants 36
Figure (10): Schematic representation of the actions of unfractionated
heparin, LMWH, and the heparin pentasaccharide analog
fondaparinux42
Figure (11): Bivalent and Univalent DTI51
Figure (12): Schematic representation of the thrombin molecule and its
inhibition by hirudin, bivalirudin and argatroban 54
Figure (13): Routes of elimination of rivaroxaban 66
Figure (14): Coumarin induced skin necrosis90
Figure (15): Reversal of dabigatran98

Contents

Introduction	1
Aim of the work	3
Physiology of coagulation system	4
Constituents of the hemostatic system	4
Coagulation pathways	15
Newer coagulation model	20
Regulatory mechanisms	24
Operation of the hemostasis and thrombus pathway -	
Pharmacology of anticoagulants	27
Vitamin K antagonists	28
Indirect Thrombin inhibitors	35
Direct Thrombin inhibitors	50
Factor Xa inhibitors	63
Monitoring of Anticoagulants	75
Monitoring of Heparin	75
Monitoring of LMWH	76
Monitoring of Heparinoids	76
Monitoring of Direct thrombin inhibitors	77
Monitoring of selective Factor X inhibitors	78
Guidelines for anticoagulant use	80
Unfractionated Heparin	85
Enoxaparin	
Fondaparinux	86
Dabigatran Dosing to Prevent Stroke and Embolism	in
Nonvalvular Atrial Fibrillation	87
Management of Complications of Anticoagulants	89
Warfarin side effects & complications	89
Indirect Thrombin inhibitors	91
Direct Thrombin inhibitors	93
Side effects and complications of direct factor X inh	ibitors 94
Heparin-induced Thrombocytopenia	99
New anticoagulant drugs used for critically ill patient	ts 107
Summary	113
References	115
Arabic summary	

List of abbreviations

ACCP: American College of Chest Physicians

ACE: Angiotensin-Converting Enzymes

ACS: Acute Coronary Syndrome

ADP: Adenosine Diphosphate

APC: Activated Protein C

aPTT: Activated Partial Thromboplastin Time

AT: Antithrombin

C_{max}: maximal plasma Concentration

CRRT: Continuous Renal Replacement Therapy

DTIs: Direct Thrombin Inhibitors

DVT: Deep Vein Thrombosis

ECT: Ecarin Clotting Time

FBC: Full Blood Count

FDA: Food and Drug Administration

FFP: Fresh Frozen Plasma

Fp: Fibrinopeptide

gla: Glutamic acid

HIT: Heparin Induced Thrombocytopenia

HITTS: Heparin-Induced Thrombocytopenia Thrombosis Syndrome

ICU: Intensive Care Unit

INR: International Normalized Ratio

LFTs: Liver Function Tests

LMW: Low Molecular Weight

MI: Myocardial Infarction

NSAIDs: Non-Steroidal Anti-Inflammatory Drugs

PCC: Prothrombin Complex Concentrates

PCI: Percutaneous Coronary Intervention

PE: Pulmonary Embolism

PF₄: Platelet Factor 4

PT: Prothrombin Time

PTCA: Percutaneous Transluminal Coronary Angioplasty

SC: Subcutaneously

TAFI: Thrombin Activatable Fibrinolytic Inhibitor

TFPI: Tissue Factor Pathway Inhibitor

tPA: Tissue Plasminogen Activator

TT: Thrombin Time

UFH: Unfractionated Heparin

VTE: Venous Thromboembolism

ACKNOWLEDGEMENT

First and foremost, I thank *ALLAH*, the most Merciful and the most Gracious for giving me the power to finish this work.

I would like to express my sincere gratitude to **Prof. Dr.Bassel Mohamed Esam Nour El Din**

Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, whose guidance and sincere supervision were the cornerstone in the building up of this essay.

I would also like to express my sincere gratitude to **Dr. Ihab Hamed Abdel Salam,** Assistant Prof. of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his keen supervision and advice.

My deepest thanks are to **Dr. Raham Hasan Mostafa,** Lecturer of Anesthesia and Intensive Care,
Faculty of Medicine, Ain Shams University, for his
invaluable help, cooperation and encouragement in
every part of this essay.

My deepest thanks and appreciation are to my father, mother & my dear family for their support and cooperation.

Introduction

Anticoagulants are unique compared with most pharmacological agents because even small deviations from therapeutic levels place patients at risk for life-threatening complications. Whereas critically ill patients are particularly susceptible to thrombosis, they also have higher risks of bleeding than the general medical or surgical patients. Although the choices for anticoagulant therapy are expanding with the development of new parenteral and oral agents, rigorous clinical trials of their use in the intensive care unit population are lacking. (**Rajasekhar et al.,2012**).

The anticoagulants heparin and dicumarol were discovered by chance. Both of these anticoagulants have been used effectively to prevent clots since 1940. In the 1970s, three different groups of researchers in Stockholm, London, and Hamilton, Ontario, began work on low-molecular-weight heparin (LMWH). LMWH is produced by chemically splitting heparin into one-third of its original size. It has fewer side effects than heparin and produces a more predictable anticoagulant response (**Hirsh et al., 2008**).

With the biotechnology revolution has come genetically engineered anticoagulant molecules that target specific clotting enzymes. The first successful synthetic anticoagulants were fondaparinux and bivalirudin. Fondaparinux is a synthetic analogue of the antithrombin-binding pentasaccharide sequence found in UFH and LMWH while lepirudin, bivalirudin, and argatroban, are based on antithrombin-independent inhibition of thrombin. (Nagler et al.,2012).

Newer designer drugs (as dabigtran, Rivaroxaban and Apixaban) that target single clotting factors and that can be taken by mouth are undergoing clinical testing. If successful, we will have safer and more convenient replacements for warfarin, the only oral anticoagulant available for more than 60 years (**Hirsh**, 2008).

Aim of the work

The aim of the work is to highlight updated anticoagulant drugs in critical care.

Physiology of coagulation system

Hemostasis is the process that maintains the integrity of a closed, high-pressure circulatory system after vascular damage, it is a critical event in the arterial diseases associated with Myocardial Infarction (MI) and stroke, and venous thromboembolic disorders account for considerable morbidity and mortality. A review of recent advances in knowledge about thrombus formation is included, plus new hypotheses and some speculations about thrombus formation and the prevention and treatment of thrombosis (Bruce and Barbara, 2008).

Constituents of the hemostatic system:

With the evolution of vertebrates and their pressurized circulatory system, there had to arise some method to seal the system if injured; hence, the hemostatic system. Interestingly, there is nothing quite comparable to the vertebrate hemostatic system in invertebrate species. In all vertebrates studied, the basic constituents of the hemostatic system appear to be conserved.

Figure 1 illustrates the three major constituents of the hemostatic pathways and how they are interrelated. Each element of the hemostatic system occupies a site at the vertex of an equilateral triangle. This representation implies that each system constituent interacts with and influences all other constituents. In the normal resting state, these interactions conspire to maintain the fluidity of the blood to ensure survival of the organism. Normally, only at the site of an injury will the fluidity of the blood be altered and a blood clot form (**Colman et al., 2006**).

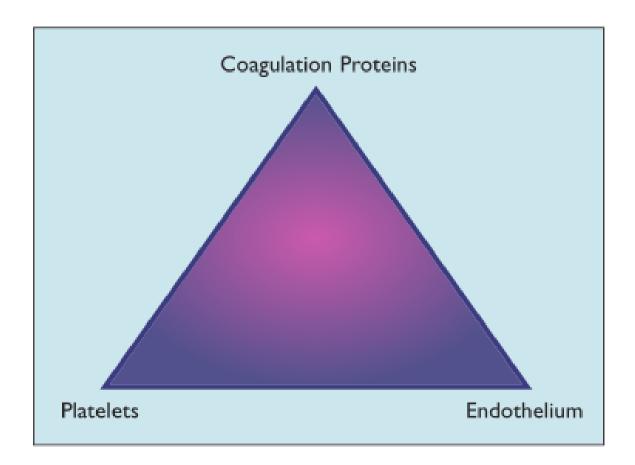
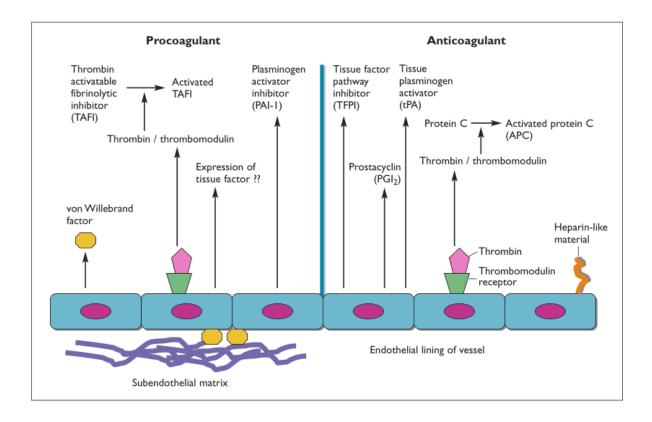



Figure (1): Basic representation of the elements of hemostasis

1- Endothelium:

Figure 2 shows some of the basic properties of the endothelium. The endothelium normally promotes blood fluidity, unless there is an injury. With damage, the normal response is to promote coagulation at the wound site while containing the coagulation response and not allowing it to propagate beyond this site (**Aird**, 2005).

Figure (2): A stylized view of endothelial functions related to procoagulation and anticoagulation. The subendothelial matrix, represented by the purple interlocking lines, is a complex of many materials. The most important constituents of the subendothelial matrix related to coagulation function are collagen and vonWillebrand factor.