Influence of data acquisition method on the marginal adaptation and the 3D internal fit of CAD\CAM crowns

A thesis Submitted to the Faculty of Oral and Dental Medicine, Ain shams University for Partial fulfillment of the

Ain shams University for Partial fulfillment of the Requirements for Master Degree

In

Fixed prosthodontics

BY

Amira Mohamed Ahmed

(B.D.S)

Ain-Shams University (2006)

Faculty of Dentistry
Ain Shams University
2013

Supervisors

Dr. Tarek Salah Morsy

Assistant professor & Head of fixed prosthodontics,

Faculty of Dentistry,

Ain shams university

Dr. Amr Saleh El-Etreby

Lecturer of fixed prosthodontics,

Faculty of Dentistry,

Ain shams university

Acknowledgement

First of all, I feel thankful to Allah for giving me the guidance and internal support in all my life and in every step that I made until this study was completed.

During the course of my post-graduate study, I was fortunate enough to be associated with some sincere and affectionate teachers, whose unconditional support and continuous encouragement made an indelible impression in my heart. I take this opportunity to express deep gratitude to all of them.

I would like to express my deep appreciation to Dr. Tarek Salah Morsy, Assistant Professor & Head of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, for his extreme support, valuable ideas, stimulating discussion, enlightening guidance, and his keen supervision throughout the research program, which was crucial in achieving the completion of this study.

I would like to express my heartful thanks and deep gratitude to Dr. Amr Saleh El-Etreby Lecturer of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, for his unforgettable help, advice, wise guidance, and fruitful assistance during the course of this research.

I, also, wish to thank Dr. Mohamed Shadi, Lecturer of Removable Prosthodontics, for his efforts in the statistical analysis

Last but not least, I would like to thank all my friends and colleges who showed and gave all the valuable support throughout the research.

Dedication

I will never be grateful enough to my family for standing beside me all over the way and for being the reason of each and every step forward in my life. My beloved Father (Dr. Mohamed Adab) who taught me everything in my life & for his extreme support and care, My Mother who supported me through the whole work and get worried till it came out to the light, And last but not least my dear brother and sister for being supportive throughout my life.

Contents

Pa	ge
----	----

Acknowledgement	ii
Dedication	iii
List of tables	iv
List of figures	vi
Introduction	1
Statement of problem	3
Review of literature	4
Aim of the study	38
Materials and Methods	39
Results	69
Discussion	92
Summary	105
References	109
Arabic summary	1

List of tables

Fig	Title	Page
1	showing the materials used through the study,	
	composition and manufacturer	39
2	Grouping of samples	46
3	Mean and standard deviation (SD) of Marginal gap	
	values measured in μm for the CEREC 3 crowns	
	fabricated from scanning the master dies (Group I)	
	and scanning the stone dies (Group II)) with two	
	different convergence angles (8, and 12 degrees), and	
	two different finish line designs (chamfer and	
4	shoulder)	69
4	Mean and standard deviation (SD) of Marginal gap	
	values measured in µm for the CEREC3 crowns	
	fabricated from scanning the master dies (Group I)	
	with two different convergence angles (8, and 12	
	degrees), and two different finish line designs	72
5	(chamfer and shoulder)	72
5	Mean and standard deviation (SD) of Marginal gap values measured in μm for the CEREC 3 crowns	
	fabricated from scanning the stone dies (Group II)	
	with two different convergence angles (8,and 12	
	degrees), and two different finish line designs	
	(chamfer and shoulder)	74
6	Mean and standard deviation (SD) of Marginal gap	7 च
Ü	values measured in μm for the two main groups,	
	Group I (master die scanning) and Group II (stone die	
	scanning)	76
7	Mean and standard deviation (SD) of Marginal gap	
	values measured in µm for the two subgroups,	
	subgroup A (8° convergence) and subgroup B (12°	
	convergence)	78

Fig	Title	Page
8	Mean and standard deviation (SD) of Marginal gap	
	values measured in µm for the two divisions, division C	
	(chamfer finish line) and division S (shoulder finish	80
9	line)	δU
9	Mean and standard deviation (SD) of internal gap values measured in µm for the CEREC 3 crowns	
	fabricated from scanning the master dies (Group I)	
	and scanning the stone dies (Group II)	82
10	Mean and standard deviation (SD) of internal gap	
	values measured in µm for CEREC 3 crowns fabricated	
	from scanning the master dies (Group I) with two	
	different convergence angles (8, and 12 degrees), and	
	two different finish line designs (chamfer and	
	shoulder)	84
11	Mean and standard deviation (SD) of internal gap	
	values measured in mm for CEREC 3 crowns fabricated	
	from scanning the stone die (Group II) with two	
	different convergence angles (8, and 12 degrees), and two different finish line designs (chamfer and	
	shoulder)	89
12	Mean and standard deviation (SD) of internal gap	0)
	values measured in µm for the two main groups,	
	Group I (master die scanning) and Group II (stone die	
	scanning)	88
13	Mean and standard deviation (SD) of internal gap	
	values measured in µm for the two subgroups,	
	subgroup A (8° convergence) and subgroup B (12°	0.5
1.4	convergence)	89
14	Mean and standard deviation (SD) of internal gap	
	mean values measured in μ m for the two divisions,	
	division C (chamfer finish line) and division S (shoulder	00
	finish line)	90

List of Figures

Fig	Title	Page
1	Elite HD impression material	40
2	Sirona CEREC Blocs premilled ceramic blocks	40
3	CEREC stone BC	41
4	CEREC optispray	41
5	CEREC In-Lab machine	42
6	The stainless steel die	43
7	Schematic drawing of the stainless steel die	43
8	Stainless steel dies showing shoulder finish line and	
	different convergence angles	44
9	Stainless steel dies showing chamfer finish line and	
	different convergence angles	44
10	The anti-rotational groove	45
11	The start up menu of the program	47
12	New restoration type selection	47
13	Impression screen	48
14	Die sprayed with CEREC optispray	48
15	inEos blue scanner	49
16	Die secured on the specific tray of the inEos blue	
	scanner using specific clay	49
17	Digital impression of the die	50
18	Animated photo of the die	51
19	Adjustment of the insertion axis	52
20	Tracing of the preparation margins	52
21	Selection of the material	53
22	Animated photo of the crown	53
23	Buccal view of the crown	54
24	Occlusal view of the crown	54
25	Internal view of the crown	55
26	The "Mill" icon	55
27	CEREC bloc in its place in the milling machine	56
28	Closure of the milling machine door	57
29	Scanning of the block dimension	57
30	Milling of CEREC Bloc	58
31	CEREC Blocs after milling	58
32	Checking of the crown on its corresponding metal die	59

Fig	Title	Page
33	Custom made perforated brass tray	60
34	Custom made perforated brass tray featuring internal	
	finish line	61
35	The preformed impression	61
36	CEREC scannable stone die	62
37	The Stereomicroscope	63
38	Steromicrograph showing the marginal gap	64
39	Cement replica	65
40	Elite HD+ light body	66
41	AutoCAD drawing of the master die (frontal view)	66
42	AutoCAD drawing of the master die(top + frontal view)	67
43	AutoCAD drawing of the master die (top view)	67
44	A bar chart for the Marginal gap mean values	
	measured in µm for the CEREC 3 crowns fabricated	
	from scanning the master dies (Group I) and scanning	= 4
45	the stone dies (Group II)	71
45	A Bar chart for the marginal gap mean values of the	
	crowns fabricated from scanning the master	
	dies(Group I) with two different convergence angles	
	(8, and 12 degrees), and two different finish line designs (chamfer and shoulder)	73
46	A Bar chart for marginal gap mean values of the CEREC	13
70	3 crowns fabricated from scanning the stone dies	
	(Group II) with two different convergence angles (8,	
	and 12 degrees), and two different finish line designs	
	(chamfer and shoulder)	75
47	A bar chart for the Marginal gap mean values	7.5
	measured in μm for the two main groups, Group I	
	(master die scanning) and Group II (stone die	
	scanning)	77
48	A bar chart for the of Marginal gap mean values	-
	measured in μm for two subgroups, subgroup A (8°	
	convergence) and subgroup B (12° convergence)	79

Fig	Title	Page
49	A chart for the Marginal gap mean values measured in	
	μm for the two divisions, division C (chamfer finish	
	line) and division S (shoulder finish line)	81
50	A bar chart for the internal gap mean values measured	
	in µm for the CEREC 3 crowns fabricated from	
	scanning the master dies (Group I) and scanning the	
	stone dies (GroupII)	83
51	A Bar chart for the internal gap mean values of the	
	CEREC 3 crowns fabricated from scanning the master	
	dies (Group I) with two different convergence angles	
	(8, and 12 degrees), and two different finish line	
	designs (chamfer and shoulder)	85
52	A Bar chart the internal fit mean values of CEREC 3	
	crowns fabricated from scanning the stone dies(Group	
	II) with two different convergence angles (8, and 12	
	degrees), and two different finish line designs	
	(chamfer and shoulder)	87
53	A bar chart for the internal gap mean values measured	
	in μm for the two main groups, Group I (master die	
	scanning) and Group II (stone die scanning)	88
54	A bar chart for the internal gap mean values measured	
	in μm for two subgroups, subgroup A (8° convergence)	
	and subgroup B (12°convergence)	90
55	A bar chart for the internal fit mean values measured	
	in mm for the two divisions, division C (chamfer finish	
	line) and division S (shoulder finish line)	91

Introduction

Throughout the years dentistry has gone through numerous developments in knowledge, techniques and technology. Among many of the more recent challenges is the approach to making high quality restorations in a short space of time. Dental CAD/CAM is the process by which the model of a prepared tooth is digitally scanned and these data are then used to generate a coping/restoration design (CAD) which in turn is used to generate a cutting path for manufacturing the coping/restoration (CAM).

THE CEREC system designed for the fabrication of indirect restorations. Since its development in 1984, the Cerec system has undergone several technical modifications. The first generation system, Cerec 1, was designed for chairside fabrication of intracoronal restorations such as inlays, onlays, and/or veneers, whereas the Cerec 2 was introduced in 1994 with redesigned software and hardware to fabricate complete crowns in addition to intracoronal restorations. The Cerec 3 system was introduced to the dental profession in 2003 and has several improvements over the Cerec 2 system.

These improvements include: an enhanced intraoral optical camera able to reproduce finer detail and depth of scale and improved software capable of recording the preparation much faster. Additionally, the Cerec 3 system allows more flexible and more true-to-detail grinding than the Cerec 2, which in turn should lead to a better fitting crown with improved occlusal morphology and design.

"Digital impression" for CAD-CAM dental restorations is the process where hardware modules connected in system record topographic structures, teeth and surrounding soft and hard tissue. There are three possible ways for this: recording intraoral tooth preparation, recording extraoral plaster models or recording the conventional impression.

Improper handling with the scanning device is one of the harmful errors in procedure of intraoral "digital impression". Improper handling of the scanner by the therapist includes the scanner instability in the mouth of the patient and improper positioning and angle of the scanner to the scanned object.

The marginal integrity of CAD/CAM restorations has been evaluated in numerous investigations criteria by means of visual inspection and tactile perception with a sharp explorer. In these studies, the majority of the CAD/CAM restorations were found to have acceptable marginal integrity according to USPHS (United States Public Health Service) criteria.

Different finish line preparation designs, rounded versus sharp internal line angles, Class I versus Class II inlays, and differences in the degree of axial wall convergence, and luting space may have an effect on marginal adaptation of Cerec indirect restorations. Results from studies imply that even though the finish line preparation design does not appear to have an effect on the marginal fit of ceramo-metal restorations; it may be an influencing factor on the marginal adaptation of Cerec-fabricated crowns.

Statement of the problem

CAD/CAM systems have not completely replaced traditional impression taking. Optical impression is technique sensitive. One of the sources of inaccuracy in utilising the CEREC Chairside CAD/CAM system has been the difficulty of accurately positioning the intraoral camera relative to the path of insertion of the preparation and restoration. Undercuts would preclude the digital acquisition, and there are instances where it is difficult for scanners to read the image (e.g., preparations with long subgingival margins or bevels). The instability of the scanner in the mouth of the patient, incorrect position and angle of the scanner to the object (due to limited mouth opening), contrast spray applied in uneven layer, leads to errors during optical impression taking.

Review of literature

I - Historical perspective

Early development of ceramic materials took place in China and Europe during the period of industrial revolution. Ceramics were the first materials to be made artificially by humans and porcelain was among the first materials to be used for early laboratory research. The plastic properties of mud and clay were discovered by chance. Historically, three basic types of ceramic materials were developed. Stoneware first appeared in China, earthenware and thirdly porcelain which was produced by fluxing "Chine stone" with white China clay to produce white translucent stoneware. Many attempts to discover the secret of Chinese porcelain gave rise to the development of a scientific approach to the synthesis of materials. The majority of the early Chinese porcelain was called hard paste porcelain which was composed of:

50% Kaolinite (Al2 O3 SiO2 2H2O), 25% Feldspar (K2O AL2O3 6SiO2), 25% Quartz SiO22. ¹

The first porcelain used in dentistry in the eighteenth century was originally based upon the triaxial porcelain composition which falls into the mullite zone of the K2O AL2O3 SiO2 phase diagram. ¹

In 1723, Fauchard first used porcelain to enamel the metal bases of dentures. He was also credited with recognizing the potential of porcelain

enamels and initiating experiments that would lead to further advances in the use of porcelain in dentistry. De Chament, a frensh dentist, introduced the first porcelain denture tooth in 1789. In 1808, Fonzi, an Italian dentist, formed individual porcelain teeth that contained embedded platinum pins. Fonzi called these teeth "terrametallic incorruptibles" and their esthetic and mechanical versatility provided a major advance in prosthetic dentistry. Ash developed an improved version of the platinum tooth in 1837. In 1885, Logan introduced the Richmond Crown, in which porcelain was fused to a platinum post. In 1903, Dr. Charles Land introduced the first ceramic crown. Early dental porcelains were relatively white and opaque, but 64 years after the introduction of porcelain to dentistry, Elias Wildman was able to formulate much more translucent porcelain with shades much closer to natural teeth. In 1958, the first dental porcelain for veneering was introduced, which led to the widespread use of metal-ceramic restorations in the 1960s and beyond, followed by the invention of the porcelain jacket crown that was popularized in the 1960s by McLean. In 1963, Vita Zahnfabrik introduced the first commercial porcelain. The 1970s saw the advent of early experiments in CAD/CAM crown fabrication, followed by an influx of ceramic-based restorative systems from the 1980s through to the present day.² The history of porcelain as a dental material thus only goes back just over 200 vears. 1

Dental ceramics are essentially oxide-based glass-ceramic systems. They possess three essential features which are ease of fabrication of complex shapes, sufficient mechanical and corrosion resistance, and aesthetic appeal. Tremendous advances have been made in the mechanical properties and fabrication methods of these materials over the last few decades. The earliest