

Treatment modalities of Craniopharyngioma

Review of literature

Submitted for partial fulfillment of Master degree of Neurosurgery

$\mathcal{B}y$

Mohammad Al-Sayed Ali Yusuf

M.B.B.Ch Ain Shams University

Supervised by Professor Dr. Mohammad Sayed Ismael

Professor of Neurosurgery Faculty of Medicine - Ain Shams University

Assistant Professor Dr. Mohammad Abdullah Al-Wardany

Assistant Professor of Neurosurgery Faculty of Medicine - Ain Shams University

Dr. Ahmed Al-Sayed Abdelbar

Lecturer of Neurosurgery
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2013

Dedication

To the soul of my father
You are the one to whom I owe everything.
You encouraged me all the way long.
I wish you were here to see your dream come true.

To my mother,

The sun of my life,

The giver of endless love, deep faith and prayers,

Without your blessings, I'm nothing!

To my brothers and sister
Ahmad, Osama and Eman
You are my heroes.
Your words of inspiration and encouragement have been always
"the wind beneath my wings".

Acknowledgement

First and foremost, my deepest thanks and gratitude go to Allah, the most beneficent, the most compassionate, and the most merciful. Without His will and generosity, none of this or any other accomplishment would have been possible.

I wish to express my gratitude and appreciation to **Professor Dr. Mohammad Sayed Ismael**. It is a real pleasure to acknowledge his sincere encouragement, Keen interest, and excellent guidance throughout this work.

I am very grateful to Assistant Professor Dr. Mohammad Abdullah Al-Wardany for his dedicated effort, constructive criticism and keeping me focused. He has always been one of my role models.

I am also very grateful to **Dr. Ahmed Al-Sayed Abdelbar** for his continuous and invaluable guidance and support that allowed this work to be fulfilled.

Warm thanks go to my dearest brother, **Dr. Ibrahim Ahmad**Sami for keeping me motivated throughout this work.

Last but not least, I am very grateful to all my family members, friends, the faculty and staff in the Department of Neurosurgery at Ain Shams University for their endless support.

INDEX

Nm	Chapter	Pages
1	Introduction and aim of the work	1
2	Embryology	5
3	Surgical anatomy of the sellar and suprasellar	9
4	Pathology of Craniopharyngioma	55
5	Diagnosis of Craniopharyngioma	70
6	Treatment modalities of Craniopharyngioma	119
7	Summary & Conclusion	234
8	References	238
9	Arabic Summary	252

LIST OF FIGURES

Figure No.	Title	Page
2-1	Embryogenesis of pituitary gland	6
3-1	Osseous relationships of the anterior and middle cranial base	10
3-2	Superior view of the osseous relations of the sphenoid bone	11
3-3	Posterior view of sphenoid bone	13
3-4	The bony part of the sella turcica and its surrounding bony structures	14
3-5	Lateral view of osseous relations of the sphenoid bone	15
3-6	Three types of sphenoid sinuses	16
3-7	multiseptated sphenoid sinus and the anterior wall of the sella	18
3-8	Coronal section in the sella and the cavernous sinus	22
3-9	superior view of the suprasellar region	24
3-10	Vascular relationships of the suprasellar	29
3-11	Circle of Willis	31
3-12	Six sagittal sections of the sellar region showing variations in the intercavernous venous connections within the dura	34
3-13	The optic nerves enclosed in the optic sheath within the optic canal	36
3-14	The optic nerve and chiasma and the surrounding vessels	38
3-15	Types of the optic chiasm	39
3-16	Lateral aspect of the brainstem and parasellar area showing the origin and course of cranial nerves	42
3-17	Anatomy of the third ventricle through midsaggittal section	45
3-18	The floor of the third ventricle is located medial to the uncus and anterior perforated substance and above the	47

Figure No.	Title	Page
	midbrain	
3-19	Olfactory, carotid, chiasmatic, interpeduncular cistern	49
3-20	parasagittal section to the left of the midline to show Liliequist's membrane and the cisterns	51
3-21	Midsagittal section show the chiasmatic and lamina terminalis cistern	52
4-1	Sagittal gross pathology shows classic Adamantinomatous craniopharyngioma with mixed solid, cystic components	58
4-2	Low magnification of adamantinomatous craniopharyngiomas	59
4-3	Low magnification view of papillary craniopharyngioma	60
4-4	Histopathology of craniopharyngioma	61
4-5	Drawing represents the grading of craniopharyngiomas. The main focus is on the vertical tumor extension	63
4-6	Diagrammatic representation of the most common locations of craniopharyngiomas	64
4-7	Preoperative and postoperative magnetic resonance imaging (MRI) classification of pediatric craniopharyngiomas	65
4-8	Wnt signaling pathway	67
4-9	Blood supply of craniopharyngioma	69
5-1	Skull x-ray film: craniopharyngioma causing enlarged sella with sellar destruction and suprasellar flocculonodular calcification	78
5-2	Axial unenhanced and contrast-enhanced CT demonstrating an inhomogeneously enhancing soft-tissue mass in the suprasellar cistern extending into the third ventricle	80
5-3	Axial CT brain demonstrating a suprasellar lesion with coarse calcification and dilatation of the temporal horns of the lateral ventricles	80
5-4	Coronal enhanced CT. There is a heterogeneous sellar and suprasellar mass with large areas of calcification	81

Figure No.	Title	Page
	within the sella	
5-5	MRI showing normal pituitary gland, sella turcica, and parasellar region	82
5-6	Nonenhanced and contrast-enhanced coronal T- weighted MRIs demonstrating an intra-/suprasellar craniopharyngioma extending into the third ventricle with multiple calcifications	83
5-7	MRIs demonstrating a hypointense suprasellar tumor with peripherally enhancing cystic areas and an inhomogeneously enhancing solid tumor part	84
5-8	MRIs showing an intra-/suprasellar craniopharyngioma with a hyperintense cystic peripherally enhancing mass and a small solid inhomogeneously enhancing portion	84
5-9	MRI demonstrating measurement guidelines to predict visual impairment	86
5-10	Coronal T1-weighted Gd-enhanced MR images demonstrating typical Grade 1 and Grade 2 hypothalamic compression	87
5-11	Axial FLAIR image showing cysts more uniformly hyperintense	88
5-12	(A) normal visual field, (B) Example of visual fields in a patient with anterior chiasmal syndrome demonstrating extensive ipsilateral loss and a superotemporal field cut in the fellow eye, (C) Visual fields demonstrating bitemporal hemianopia	102
5-13	Fundus oculi examination showing moderate papilledema, atrophic papilla	103
5-14	MRI showing chiasmatic astrocytoma	107
5-15	Axial CT showing craniopharyngioma	107
5-16	MRI showing Large multicystic craniopharyngioma	108
5-17	MRI showing suprasellar germinoma with extension inferiorly along the pituitary stalk	108
5-18	MRI showing hypothalamic hamartoma	109
5-19	Coronal enhanced T1-weighted image of Langerhans' cell histiocytosis	109
5-20	Pituitary adenoma filling the sella and extending into the suprasellar space. (coronal TI-Wlwith contrast)	110

Figure No.	Title	Page
5-21	Rathke's cleft cyst (coronal T1-WI with contrast)	110
5-22	Imaging and histopathological examples of typical RCCs	111
5-23	Imaging and histopathological examples of a suprasellar epidermoid tumor	114
5-24	lymphoma of hypothalamus; post-contrast, T1- weighted image and DWI	115
5-25	Coronal enhanced T1-weighted image of a chondrosarcoma	115
5-26	Sagittal enhanced T1-weighted image of a suprasellar meningioma	116
5-27	Sagittal contrasted T1 MRI shows meningioma	116
5-28	Coronal TIWI MR shows a classic Rathke's cleft cysts that elevates and drapes the optic chiasm	117
5-29	Sagittal T1MRI of the suprasellar arachnoid cyst	117
5-30	Coronal TIWI MR shows a classic pituitary macroadenoma with "snowman" shaped suprasellar extension	118
5-31	Coronal T1 enhanced MR shows Microadenoma in a patient with galactorrhea	118
6-1	Surgical corridors that may be useful for the approach to a craniopharyngioma, depending on the size and pattern of the tumor and preference of the surgeon	129
6-2	Approaches to the anterior fossa and sellar region include the trans-sphenoidal, extended transsphenoidal, bifrontal, interhemispheric, pterional, and supraorbital	130
6-3	A: Intraoperative photograph of the bicoronal incision that extends behind the hairline. B: The vascularized pedicled pericranial flap that is elevated as a separate layer	132
6-4	Bifrontal and extended bifrontal approaches	134
6-5	A: Intraoperative photograph showing the bifrontal transbasal bone the inferior margin of the osteotomy is at the nasofrontal suture and extends laterally over both orbital rims. B: 3D reconstructed CT scan of the skull demonstrating the bifrontal transbasal bone flap	135
6-6	A: Intraoperative photograph after the bone flap has	136

Figure No.	Title	Page
	been removed. B: the bifrontal dural opening,	
	cottonoid patties are used to protect the frontal lobes	
	during ligation and division of the superior sagittal	
	sinus and falx cerebri	
	Intraoperative photographs of intradural exposure and	
6-7	tumor removal achieved using the transbasal	138
	subfrontal approach	
6-8	The bifrontal interhemispheric approach	139
6-9	Right lateral disection within carotico-optic space	140
6-10	Detaching the upper pole of the tumour from the	142
9-10	hypothalamus	142
6-11	The subfrontal approach subdivided into several	145
0-11	different routes	145
6-12	Lamina terminalis approach	147
C 12	The skin incision for a frontolateral craniotomy & the	151
6-13	bone flap for a right frontolateral craniotom	151
6-14	The supraorbital approach	155
C 45	Cadaveric dissection showing the steps of the	150
6-15	supraorbital approach	156
	The stepwise development of supraorbital approach,	
6-16	showing the reduction in size of the skin incision and	157
	craniotomy	
6-17	Pterionial approach	160
	Intraoperative photograph showing the initial exposure	
6-18	during a left-side approach via the opticocarotid and	163
	carotid occulomotor triangles	
6-19	Artist's illustration showing a schematic of a modified	165
0-19	orbitozygomatic craniotomy	103
6-20	Orbitozygomatic approach	168
	Axial view in a cadaveric dissection show the angles of	
6-21	exposure to the anterior and middle fossae gained	169
	through the orbitozygomatic craniotomy	
	Preoperative CT and MR images and sagittal and	
6-22	coronal T1-weighted post-Gd MR images of a large	170
0-22	craniopharyngioma in a 4-year-old girl that was	1/0
	resected using a modified orbitozygomatic approach	
6-23	Interhemispheric transventricular approach	174

Figure No.	Title	Page
6-24	The position of the patient and the skin incision for a right-sided petrosal approach	175
6-25	Initial exposure via a presigmoid route	176
6-26	Illustration of a retrochiasmatic craniopharyngioma exposed via the petrosal approach	177
6-27	The trans-sphenoidal approach used for craniopharyngiomas that are primarily intrasellar or when the suprasellar componentis cystic	180
6-28	Examples of craniopharyngioma extension (and recommended approach)	186
6-29	The transventricular endoscopic approach	189
6-30	Neuronavigational image showing the catheter trajectory and the cystic craniopharyngioma	190
6-31	Types of craniopharyngiomas	192
6-32	A case of a type 1 (preinfundibular) craniopharyngioma	196
6-33	A case of type 2 (infundibular) craniopharyngioma	198
6-34	A case of a type 3 (retroinfundibular) craniopharyngioma	200
6-35	A, Leksell gamma knife, Model C. B, helmet and robotic device for migration through Cartesian coordinates in radiosurgical device	218
6-36	Photograph of CyberKnife	219
6-37	A, close-up view of CyberKnife robot arm and LINAC. B, close-up view of treatment couch and floor-mounted orthogonal amorphous silicon detectors. C, patient with fitted mask on treatment couch	220
6-38	Dose planning with the CyberKnife treatment planning software	220
6-39	CT/MR fusion planning images	221
6-40	MR images obtained before treatment of a cystic CP and the 4 years after the IFNα2A treatment	227
6-41	Treatment algorithm for craniopharyngiomas	233

LIST OF TABLES

Table No.	Title	Page
5-1	Differential diagnosis of sellar mass	105
5-2	Sellar and suprasellar tumors	106
5-3	Differential diagnosis of craniopharyngioma in CT or MRI	112,113
6-1	Selection criteria used for radical surgery	128
6-2	Highest urinary osmolality after pitressin in water deprivation test	209

Introduction

"There is perhaps no other primary brain tumour that evokes passion, emotion, and as a result, controversy than does the craniopharyngioma" (*Gleeson et al, 2008*).

Craniopharyngiomas are slow-growing, benign, locally invasive intracranial tumours that can generate considerable morbidity and recurrences are often difficult to manage. As reliable morphologic criteria for accurately predicting the clinical outcome of these tumours is lacking, it has challenged the neurosurgeon and his skills for years. These tumours have a very intricate relation with the hypothalamus, pituitary stalk and optic apparatus, which have caused excessive problems regarding optimal management. Even now, no consensus exists in the optimal management of these patients (*Kato et al, 2008*).

One of the earliest descriptions of a craniopharyngioma is credited to **Zenker**, who in an 1857 autopsy study recognized a suprasellar lesion containing cholesterol crystals. Extensive study by **Luschka** of the squamous epithelial cells in the adenohypophysis followed in1860. The significance of these findings was not initially recognized, and for many decades they remained overlooked (**Karavitaki et al., 2006**).

In 1892, *Onanoff* coined the term *pituitary adamantinoma* after appreciating the similarities between tumors of the jaw and tumors of the pituitary region. In 1899, pathologists *Mott* and *Barrett* began to investigate a group of epithelial-type tumors that occupied the sellar region.

They postulated that these tumors arose from either Rathke's pouch or the hypophyseal duct. In the next few years, these tumors were reported by both *Babinski* and *Frohlich* as suprasellar lesions without acromegaly (*Mehta and Black*, 2004).

In 1902, Saxer reported a tumor consisting of these cells. Two years later, *Erdheim*, after a systematic study of the squamous epithelial cells in the adenohypophysis, described them only in the glands of adult patients, usually on the anterior surface of the infundibulum and in groups or islets of variable size, shape, and number. Because a few of these groups of cells contained small cysts similar to some pituitary tumors unnamed at that time, he was convinced that both lesions had the same origin and called them hypophyseal duct neoplasms. Interestingly, he did not find any cell rests along the route of the regressed craniopharyngeal duct, a discrepancy explained by von *Mihalkovitcs*' theory that the developing adenohypophysis underwent a forward andupward rotation carrying with it the cranial insertion of the gland. Similar observations on clumps of cell rests were later published by *Duffy*, *Kiyono*, and Carmichael, but it wasn't until 1932 that squamous epithelial cells were also detected in the pituitary glands of childhood populations by Susman (Karavitaki et al., 2006). Different terminologies were used for these tumors (including hypophyseal ductor craniopharyngeal duct or Rathke's pouch tumors, interpeduncular or dysontogenetic craniobuccal suprasellar cysts, or suprasellar epitheliomas and adamantinomas), until 1932, when the name "craniopharyngioma" was introduced by Cushing. Commenting on the new terminology, Cushing wrote:

"This admittedly somewhat cumbersome term has been employed for want of something more brief to include the kaleidoscopic tumors, solid and cystic, which take their originfrom epithelial rests ascribable to an imperfect closure of the hypophyseal or craniopharyngeal duct" (*Karavitaki et al.*, 2006).

This term is now well entrenched in the neurosurgical literature, although embryologically, these tumors are remnants of the primitive stomodeum and not the pharynx (*Mehta and Black*, 2004).

The first attempt for surgical removal of craniopharyngioma was credited to *Halsteadt* who performed transsphenoidal surgery for a patient with symptoms of a sella mass, in 1909 (*Karavitaki et al.*, 2006).

The surgical philosophy regarding the treatment of craniopharyngiomas has vacillated significantly over the last 5 decades. Early operative series demonstrated an extremely high mortality rate of 40%, with only 15% of patients undergoing total removal. By the early 1960s, many felt that aggressive surgery should be abandoned in favor of cytoreduction combined with radiotherapy. In midpostoperative 1970s. with improvements in both endocrinologic care and overall surgical technique, there was renewed support for an aggressive surgical approach. Even today, controversy exists between those who advocate aggressive surgical resection and those who support a more conservative approach (Mehta and Black, 2004).