

Biochemical Studies on Antioxidant Activity of Certain Irradiated Agro Industrial Wastes

SUBMITTED BY ASHRAF MOHAMED MONIR SHAABAN

M. Sc. Biochemistry Ain Shams University (2008) For Fulfillment of PhD Degree in Biochemistry

Supervising Committee

Dr. Dina Mohamed Seoudi Prof. Dr. M. Diaa El-Din H. Farag

Assistant Prof. of Biochemistry Biochemistry Department Faculty of Science Ain Shams University Prof. of Biological Sciences
Chairman of Industrial Irradiation
Division, Former
National Center for Radiation
Research and Technology
Atomic Energy Authority

Dr. Nahla Samir Hassan

Assistant Prof. of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Manal Asem Emam

Assistant Prof. of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Department of Biochemistry Faculty of Science Ain Shams University

Biochemical Studies on Antioxidant Activity of Certain Irradiated Agro Industrial Wastes

Board of Scientific Supervision

Dr. Dina Mohamed Seoudi

Assistant Prof. of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. M. Diaa El-Din H. Farag

Prof. of Biological Sciences Chairman of Industrial Irradiation Division, Former National Center for Radiation Research and Technology Atomic Energy Authority

Dr. Nahla Samir Hassan

Assistant Prof. of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Manal Asem Emam

Assistant Prof. of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Approval Sheet

Biochemical Studies on Antioxidant Activity of Certain Irradiated Agro Industrial Wastes

By

Ashraf Mohamed Monir Shaaban Mabrouk

B. Sc. of Science, Bio Chemistry (1995) M. Sc. of Science in Biochemistry (2008) Biochemistry Department, Faculty of Science, Ain Shams University

This thesis for PhD degree has been approved by:		
Prof. Dr. Samir Mostafa Abdel Aziz		
Prof. of Biochemistry, Director of Middle Radioisotope Centre for the Arab Countries, Forme	· ·	
Prof. Dr. Amal Saad Eldin Hussein		
Prof. of Environmental & Preventive Medicine, He & Occupational Medicine Department, Envir Division, National Research Center.		
Prof. Dr. Mohamed Diaa El-Din H. Farag		
Prof. of Biological Science, Chairman of Industrial Former, National Center for Radiation Research and Atomic Energy Authority.	•	
Dr. Dina Mohamed Seoudi		

Assistant Prof. of Biochemistry, Biochemistry Department, Faculty of

Science, Ain Shams University.

ACKNOWLEDGMENTS

First and foremost all praise to **Allah** the most gracious and most merciful, who guides the straight path, for all **His** gifts throughout life, for helping to complete this work. And the peace and greeting are upon the prophet **Mohamed** as well as his family and his companions.

I wish to express my sincere appreciation, infinite gratitude to **Dr. Dina Mohamed Seoudi, Dr. Nahla Samir Hassan,** and **Dr. Manal Asem Emam,** Assistant Professors of Biochemistry, Faculty of Science, Ain Shams University for their great support, their meticulous supervision, patience, encouragement and finally I wish to thank them for everything I had been taught from them.

My thanks also due to **Prof. Dr. M. Diaa El-Din H. Farag**, Prof. of Biological Sciences, Chairman of Industrial Irradiation Division, Former, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority for his supervision, suggesting the point of research, guiding, inspiring discussion, criticism, building up this thesis and finally I wish to thank him for everything I had been taught.

Finally, special debt of gratitude to my father's soul **Prof. Dr. Mohamed Monir Shaaban** whom I miss his presence and support but I will not ignore that he was the mentor that guided and inspired me, all my thanks also goes to my mother, brother, wife, all my colleges at the Food Irradiation Research Department, NCRRT and to my other friends, too numerous to mention who helped me in one way or the others.

Ashraf Mohamed Monir Shaaban

Contents

Subject	Page
Subject	no.
Abstract	I-III
List of tables	
List of figures	
List of abbreviations	
Introduction	1-5
Aim of the work	6
Review	7-51
1-Antioxidants and Their Physiological and Biochemical	
Effects.	7
1.1 Antioxidants and Rheumatoid Arthritis	9
1.2 Antioxidant and Cancer	12
1.3 Antioxidants and diabetes	17
1.4 Antioxidant and arthrosclerotic risk factors	22
2-Dietary antioxidants	25
2.1 Grapes and its by-products	25
2.2 Tomato and its pomace	30
2.3 Artichoke and its leaves	37
3-Irradiation processing for food, feed and agro-industrial by-	
products	44
Materials and methods	52-73
1. Materials	52
1.1. Plant material	52
1.2. Radiation Processing	52
1.3. Animals	53
2. Methods	55
2.1. Chemical composition	55
2.1.1. Moisture content	55
2.1.2. Crude fat	55
2.1.3. Crude protein (CP)	56
2.1.4. Ash content	58
2.1.5. Crude fiber content (CF)	58
2.1.6. Total carbohydrate (Nitrogen free extract, NFE)	
2.1.6. Total carbohydrate (Nitrogen free extract, NFE) 2.1.7. Lipid extraction and determination of fatty acids	
2.1.8. Amino acids determination	60
2.1.9. Tannins analysis	61

Subject		Page
		no.
2.1.10.	Antioxidant activities (DPPH assay)	62
2.1.11.	Total Phenolic compounds	63
2.2.	Biochemical parameters	64
2.2.1.	Serum ALT (Alanine Aminotransferase)	65
2.2.2.	Serum AST (Aspartate aminotransferase)	66
2.2.3.	Serum Cholesterol	67
2.2.4.	Serum HDL- C	68
2.2.5.	Serum Triglycerides	69
2.2.6.	Serum LDL-C	71
2.2.7.	Serum VLDL-C	71
2.2.8.	Atherogenic Index (AI)	71
2.2.9.	Plasma glucose	71
2.3.	Organs weights	72
2.4.	Statistical analysis	73
Results.		74-134
Discussi	on	135-156
Summa	ry	157-164
	ices	165-209
	Summary	I-II
	Abstract	III-IX

Abstract

Abstract

Ashraf Mohamed Monir Shaaban "Biochemical studies on antioxidant activity of certain irradiated agro industrial wastes". PhD. Thesis, Ain-Shams University, Faculty of Science, Biochemistry Department.

Food irradiation is a method of preservation; it is used to extend the shelf life of food products fresh and/or dried, destroy the contaminating harmful pathogens and modify the activity of bioactive compounds present in food materials.

The present study was conducted to test the possible biochemical impacts of radiation processing on three agro industrial wastes (grape seed-skin, tomato pomace and artichoke leaves), as well as to elucidate the physiological and biochemical effects of feeding growing male Wister rats on diets supplemented with the processed agro industrial wastes at dose levels of 10, 20 and 30 kGy.

The chemical composition of processed agro industrial wastes at the above mentioned doses showed no significant differences in corresponding to the non-irradiated one. The orthogonal statistical analysis of the data revealed that the linear, quadratic and/or cubic effects were not significantly different; however, an exception for these general observations was observed for fiber content where it was significantly reduced accompanied with increase in nitrogen free extract.

Statistical analysis of polyphenol, tannin content and free radical scavenging activity results showed that irradiation processing caused an increase in polyphenols as a function of radiation dose, meanwhile grape seed-skin processed by 20 kGy gamma rays showed a decrease by 15.38%, tannin content exhibited an increase in both grape seed-skin and artichoke leaves at all radiation doses used. In contrast, grape seed-skin irradiated at dose level 10 kGy has lost 25 % corresponding to their control one, same observation of reduction in tanning content of tomato pomace, was recorded. Regarding to the impact of irradiation treatment up to 30 kGy on free radical scavenging activity of grape seeds-skin, tomato pomace and artichoke leaves, the results indicated that there was a significant reduction in their ability to scavenge free radicals, while an exception was observed for artichoke leaves processed by 10 kGy.

The amino acid pattern was significantly affected by gamma irradiation, where some amino acids increased; others decreased, or did not change. It was observed that the changes in amino acids pattern as affected by irradiation up to and including 30 kGy was occurred without a specific trend in the three agro industrial wastes under investigation.

The fatty acid profile of the three agro industrial wastes under investigation was significantly affected by radiation processing which caused an increase in some fatty acids, decrease in others and some did not change, compared to those corresponding fatty acids in non-irradiated three agro industrial wastes, with no specific trend.

The physiological and biochemical performance of growing male Wister rats as affected by feeding high fat diets supplemented with non-irradiated or irradiated up to and including 30 kGy agro industrial wastes under investigation for 8 weeks, showed better results when compared with those rats fed on reference diet. It has been manifested in body weight gain and internal organ weight alongside biochemical aspects such as serum total cholesterol, triglycerides, LDL-C, HDL-C, VLDL-C, AI, ALT, AST and serum glucose.

List of Tables

Table No.	Legend	Page
Table (1)	Effects and applications of γ -rays doses in food irradiation	48
Table (2)	Composition of reference diet	54
Table (3)	Chemical composition of raw and gamma irradiated grape seeds-skin	75
Table (4)	Chemical composition of raw and gamma irradiated tomato pomace	78
Table (5)	Chemical composition of raw and gamma irradiated artichoke leaves	81
Table (6)	Amino acids composition of irradiated and non-irradiated grape seed - skin	84
Table (7)	Amino acids composition of irradiated and non-irradiated Tomato pomace	87
Table (8)	Amino acids composition of irradiated and non-irradiated Artichoke leafs	90
Table (9)	Fatty acids (%) of raw and gamma irradiated wastes	94
Table (10)	Antioxidant content and activity of raw and gamma irradiated grape seeds-skin	97
Table (11)	Antioxidant content and activity of raw and gamma irradiated tomato pomace	100
Table (12)	Antioxidant content and activity of raw and gamma irradiated artichoke leaves	103
Table (13)	Body mass of rats fed on non-irradiated and irradiated Grape seed-skin incorporated in high fat diets	106
Table (14)	Body mass of rats fed on non-irradiated and irradiated Tomato Pomace incorporated in high fat diets	109
Table (15)	Body mass of rats fed on non-irradiated and irradiated Artichoke leaves incorporated in high fat diets	112
Table (16)	Relative weight of organs of rats fed on non-irradiated and irradiated Grape seed-skin incorporated in high fat diets	115
Table (17)	Relative weight of organs of rats fed on non-irradiated and irradiated Tomato pomace incorporated in high fat diets	118

Table No.	Legend	Page
Table (18)	Relative weight of organs of rats fed on non-irradiated and irradiated Artichoke leaves incorporated in high fat diets	121
Table (19)	Some biochemical parameters of rats fed on non- irradiated and irradiated Grape seed-skin incorporated in high fat diet	125
Table (20)	Some biochemical parameters of rats fed on non- irradiated and irradiated Tomato pomace incorporated in high fat diets	129
Table (21)	Some biochemical parameters of rats fed on non- irradiated and irradiated Artichoke leaves incorporated in high fat diets	133

List of Figures

Figure No.	Legend	Page
Fig. (1)	Chemical composition of raw and gamma irradiated grape seeds—skin	76
Fig. (2)	Chemical composition of raw and gamma irradiated tomato pomace	79
Fig. (3)	Chemical composition of raw and gamma irradiated artichoke leaves	82
Fig. (4)	Percentage change of calculated parameters of amino acids of raw and γ-irradiated grape seeds-skin	85
Fig. (5)	Percentage change of calculated parameters of amino acids of raw and γ-irradiated tomato pomace	
Fig. (6)	Percentage change of calculated parameters of amino acids of raw and γ-irradiated artichoke leaves	91
Fig. (7)	Changes of fatty acids content of raw and γ - irradiated grape seeds-skin as being affected by irradiation treatment	95
Fig. (8)	Changes of fatty acids content of raw and γ - irradiated tomato pomace as being affected by irradiation treatment	95
Fig. (9)	Changes of fatty acids content of raw and γ-irradiated artichoke leaves as being affected by irradiation treatment	
Fig. (10)	percentage change of antioxidant parameters of γ-irradiated grape seeds-skin compared to non-irradiated	
Fig. (11)	Percentage change of antioxidant parameters of γ-irradiated tomato pomace compared to non-irradiated	104
Fig. (12)	Percentage change of antioxidant parameters of γ-irradiated artichoke leaves	104
Fig. (13)	Body mass of rats fed on non-irradiated and irradiated Grape seed-skin incorporated in high fat diets	107
Fig. (14)	Body mass of rats fed on non-irradiated and irradiated Tomato pomace incorporated in high fat diets	110

Figure No.	Legend	Page
Fig. (15)	Body mass of rats fed on non-irradiated and irradiated Artichoke leaves incorporated in high fat diets	113
Fig. (16)	Relative weight of organs of rats fed on non- irradiated and irradiated Grape seed-skin incorporated in high fat diets	116
Fig. (17)	Relative weight of organs of rats fed on non- irradiated and irradiated Tomato pomace incorporated in high fat diets	119
Fig. (18)	Relative weight of organs of rats fed on non- irradiated and irradiated Artichoke leaves incorporated in high fat diets	122
Fig. (19-a)	Some biochemical parameters of rats fed on non-irradiated and irradiated Grape seed-skin incorporated in high fat diets	126
Fig. (19-b)	Atherogenic index and AST/ALT ratio of rats fed on non-irradiated and irradiated Grape seed-skin incorporated in high fat diets	126
Fig. (20-a)	Some biochemical parameters of rats fed on non-irradiated and irradiated Tomato pomace incorporated in high fat diets	130
Fig. (20-b)	Atherogenic index and AST/ALT ratio of rats fed on non-irradiated and irradiated Tomato pomace incorporated in high fat diets	130
Fig. (21-a)	Some biochemical parameters of rats fed on non-irradiated and irradiated Artichoke leaves incorporated in high fat diets	134
Fig. (21-b)	Atherogenic index and AST/ALT ratio of rats fed on non-irradiated and irradiated Artichoke leaves incorporated in high fat diets	134

List of Abbreviations

Abb.	Full Name
A.O. A. C.	Association of Official Analytical Chemists
AI	Atherogenic index
ALT	Alanine Aminotransferase
AST	Aspartate aminotransferase
CF	Crude fiber
CP	Crude protein
DPPH	2, 2-diphenyl-1-picrylhydrazyl
DWG	Daily weight gain
FAO	Food and Agriculture Organization of the United
FAO	Nations
FW	Final weight
HDL-C	High density lipoproteins cholesterol
IAEA	International Atomic Energy Agency
IW	Initial weight
LDL-C	Low density lipoproteins cholesterol
Mo	Moisture
NFE	Nitrogen free extract
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
TAA	Total amino acids
TEAA	Total essential amino acids
TNEAA	Total non-essential amino acids
TWG	Total weight gain
VLDL-C	Very low density lipoproteins cholestero;
WHO	World Health Organization
γ	Gamma irradiation